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The objective of this paper is to analyze the pressure stability of fractional step
finite element methods for incompressible flows that use a pressure Poisson equation.
For the classical first-order projection method, it is shown that there is a pressure
control which depends on the time step size, and therefore there is a lower bound for
this time step for stability reasons. The situation is much worse for a second-order
scheme in which part of the pressure gradient is kept in the momentum equation. The
pressure stability in this case is extremely weak. To overcome these shortcomings, a
stabilized fractional step finite element method is also considered, and its stability is
analyzed. Some simple numerical examples are presented to support the theoretical
results. © 2001 Academic Press

1. INTRODUCTION

Fractional step methods for the incompressible Navier—Stokes equations have enjc
widespread popularity since the original works of Chorin [1] and Temam [2]. The reas
for this relies on the computational efficiency of these methods (see e.g., [3—6]), basic
because of the uncoupling of the pressure from the velocity components. However, se\
issues related to these methods still deserve further analysis, and perhaps the most s
of these are the behavior of the computed pressure near boundaries and the stability c
pressure itself.

Referring to the pressure boundary conditions, it is well known that numerical bound:
layers may appear. The reason for this can be explained by considering the pres
boundary condition associated to the splitting of the continuous problem, as propose
[1, 2]. Although relevantin some cases, this misbehavior does not affect the global pres:
convergence [7], and can be shown to be less dramatic than expected in most situa
[8]. In any case, any reference to the correct boundary conditions for the fractional s
scheme can be skipped by considering the splitting at the purely algebraic level, once
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space discretization has been performed. This is the approach advocated in [9, 10] anc
we will follow here.

The study of the pressure stability for schemes that use a pressure Poisson equation
main concern of this paper. Surprisingly, this stability is rarely made explicit. It is normal
hidden by the convergence analysis, when it is required that the time step sineabie
enoughIn general, analyses at the continuous space level are based on the stability o
continuous pressure [11, 12], whereas when the space is discretized it relies on the sta
of this discretization, either the finite element method as in [13] or a very simple fini
difference setting as in [14]. Other attempts to study the pressure stability are presente
[15], where results much weaker than those presented here are stated (only for the scl
of Section 3.2 and assuming the time step size sufficiently large).

The results to be presented in this paper refer to two types of fractional step scher
namely, the classical first-order projection method and a second-order algorithm be
on the Crank—Nicolson discretization for the viscous and convective terms and a sec
order pressure splitting, leaving the pressure gradient at a given time level in the f
step and computing its increment in the second one (see [12, 16-19] for different id
related to second-order schemes). First, the stability of these schemes in the conte
a finite element space discretization is analyzed in Section 3 using matrix argume
It is shown that a certain pressure stability can be expected, regardless of the partic
discrete velocity-pressure spaces chosen. In fact, sometimes fractional step schemes tt
the pressure Poisson equation are considered as “stabilized” [20]. However, this stak
can be useful for the first-order scheme, but it is certainly too weak for the secol
order one. In both cases, though, it is given by the time step size, and hence this
is limited from below simply to stabilize the space discretization. It is worth noting th:
this dependence of the stabilization terms on the time step size also appears in s
formulations aiming to stabilizeonvectionand not the velocity-pressure interpolation (see
[21] for a version of the Characteristic-Galerkin method where this fact is clearly demol
trated).

To avoid the bond described, a pressure stabilized scheme is proposed in Sectic
Again, the stability analysis of both the first- and second-order fractional step scheme
undertaken, now using a variational setting rather than the previous matrix language.
stabilization is intended to mimic the stabilizing effect of the first-order projection methc
The method was originally presented in [22] for the steady Stokes problem, exten
to the nonlinear case in [23], and to the transient problem using a monolithic time ¢
cretization in [24]. In spite of the fact that the variational approach used in Sectior
supersedes the matrix analysis of Section 3, the latter is extremely useful to understan
stabilization mechanism introduced by the splitting and, more precisely, by approximat
(14) in Section 2.

The final step is to extend the previous stabilization method to the case in which c
vection needs also to be stabilized. The resulting formulation, based on the ideas of [2¢
presented in Section 5. The formulation is able to have control over the pressure grac
and the nonlinear convective term while yielding very accurate numerical results, much|
overdiffusive than classical pressure stabilization methods or upwind techniques desic
to deal with convection dominated flows.

Some numerical results are presented in Section 6. In spite of their simplicity, they clez
show that the theoretical predictions of the paper are encountered in practice. The sumi
of the most salient results and the conclusions are finally presented in Section 7.
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2. FRACTIONAL STEP METHODS FOR THE NAVIER-STOKES EQUATIONS

2.1. Problem Statement

2.1.1. Continuous problem.Inthe simplest possible setting, the incompressible Navier
Stokes equations for a fluid moving in a domé&lrof R? (d = 2 or 3) in a time interval
[0, T] are

dUu4+u-Vu—vAu+Vp="Ff inQ,re(T), Q)
V.-u=0 inQ, te0T1), (2)

whereu is the velocity field p the kinematic pressuré, the vector field of body forces, and
v > 0the kinematic viscosity. These equations need to be supplied with an initial conditi
for the velocity and a boundary condition, which, for simplicity, we will take as the simpl
homogeneous Dirichlet conditian= 00ond<2, r € [0, T].

The finite element space discretization that we will consider is based on the variatio
formulation of the problem. In order to write it, let us introduce the forms

a(u,v) :=v(Vu, Vv), b(g,v):=(q,V-Uu,

(U, v, w) = (U- Vv, w) + 3((V - W)v, w),

where (, -) denotes the standafdinner product. In these expressions, for a fixed0, 7],
u, v, w are assumed to belong to the velocity spéce [Hol(sz)]d of vector functionswhose
components and their derivatives are square-integrable and vanigh, @ndg belongs
to the pressure spaa@ = L2(2)/R of square-integrable functions modulo constants
Observe that corresponds to the skew-symmetric form of the convective term. For exac
divergence freel, the second term af vanishes. However, it will simplify the analysis of
the discrete problem, where we will often make use of the propéttyv, v) = O for all
veV.

Having introduced this notation, the weak form of problem (1)—(2) consists of finding
andp such that

(0:u, v) +c(u,u,v) +a(u,v) —b(p,v)=(f,v) VveV,
b(g,u)=0 Vg e Q,

andu satisfying the initial condition. The notatigrf, v) stands for the duality pairing of
veVandf e [H Q)] (fort € [0, T]).

2.1.2. Monolithic time discretization.We start by considering the simplest time dis-
cretization of the problem, namely, the generalized trapezoidal rule, and solving for
velocity and the pressure at the same time. This is what wencaiblithicscheme. Lef €
[0, 1] be a given parameter and consider a partition ofldnto N time steps of (for sim-
plicity) equal sizez. Let f be a generic function of time and’ the value off at:" = nét
or an approximation to it, and lgt"t? := 6"t 4 (1 —0) £, 8, f" == (f"+1 — f")/ét.
Givenu” atr”, the time discrete problem consists of finding and p"+1 ats*+1 as the
solution of

(8:u", v) + c(ut? umt? vy 4 a"t? v) —b(p"tLv) = (" ) Ve eV, (3)

b(g, U™y =0 Vg e Q. (4)
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The pressure value computed here has been identified as the pressure evaltfated at
although this is irrelevant for the velocity approximation. The values of interest of
ared = 1/2, corresponding to the second-order Crank—Nicolson scheme (see [26] fc
thorough analysis of this scheme) afi@= 1, which corresponds to the backward Euler
method. Iff is not continuous in time,f "%, v) can be taken as the time averageé bfv)
over the time steprf, " *1].

2.1.3. Finite element discretizationsLet V, be a finite element space to approximate
V, andQ, a finite element approximation t@. Functions inV,, need to be continuous
piecewise polynomials, whereas continuity is in principle not requiredprHowever,
we will consider only continuous pressure interpolations, for reasons explained below.

The finite element discretization of (3) and (4) reads

(SIUZ, vh) +C(UZ+0, UZ+0, vh) —i—a(UZJrg, vh) — b(pZ+l, vh) = frtl vy) Yv, € Vp,

b(gn. up™) =0 Vg, € Q.

Itis well known that for this discrete problem to be stable the velocity and pressure spa
need to satisfy the classical inf-sup condition (see e.qg., [27]), which in particular preclu
the use of conveniemqualvelocity-pressure interpolations. However, it was early note
that this condition is not required when fractional step methods using a pressure Poi:
equation are employed (see e.g., [20, 28—31 ¢ analysis and clarification of this situation
is precisely the objective of this paper

Before presenting the fractional step schemes to be studied, let us introduce the m
form of the problem. This is given by

M§,U" + KUr+ountt + Gptl = pr+o, (5)
DUt =0, (6)

whereU andP are the arrays of nodal velocities and pressures, respectively. If we den
the node indexes with superscriptsh, the space indexes with subscriptsj, and the
standard shape function of noddy N¢, the components of the arrays involved in these
equations are

M¢P = (N, N®)s;; (8 is the Kroneckes),

KUy = (N9, upt? - VNP)si; + %(N“, (V- upt)NP)si; + v(VN, VNS5,

G{" = —(@N", N,
Fi = (N, i),
D4 = (N*, 9;N").
Itis understood that all the arrays are matrices (exeepthich is a vector) whose compo-

nents are obtained by grouping together the left indexes in the previous expreasamas (
possiblyi) and the right indexesh(and possiblyj). Note thatG = —D’.
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2.2. Fractional Step Schemes

The fractional step schemes we will consider can be introduced at this point, appliec
the fully discrete problem (5)—(6). This is exactly equivalent to

1 -
M= (U — U™ + KUTHU™ 4y GP" = B, (7)
1 ~
Mg(uwkl _ Un+l) + G(Pn+l _ )/Pn) =0, (8)
DU =0, (9)

whereUn+1 is an auxiliary variable ang is a numerical parameter, whose values of interes
are 0 and 1. At this point we can make the essential approximation

K(Un+9)un+0 ~ K(On+0)0n+9, (10)

where Un+¢ .= gUn+1 4 (1 — 9)U". ExpressingU"+! in terms of U"+1 using (8) and
inserting the resultin (9), the set of equations to be solved is

1 - .
ME(UVH-]. _ Un) + K(Un+0)Un+9 + yGPn — Fn+9’ (11)
§tDMIG(P" 1 — yP") = DU, (12)

1 ~
M= U = 07 + G — yP") = 0, (13)

which have been ordered according to the sequence of solutiot)fok, P**+1, and
U™+, This uncoupling of variables has been made possible by (10). This approximat
is interpreted in [9, 10] as aimcomplete block LU factorizatioaf the original problem
(7)-(9). The advantage of this discrete approach is that now there is no question al
the boundary conditions for the intermediate varidite: since boundary conditions are
incorporated in the discrete problem (5)-(6), the prescription:ifJf’o‘r‘L are exactly the
same as for the end-of-step velodiy .

Even though problems (11)—(13) can be implemented as such, it is very convenien
make a further approximation. Observe tBa¥~'G represents an approximation to the
Laplacian operator. In order to avoid dealing with this matrix (which is computational
feasible only ifM is approximated by a diagonal matrix), we can approximate

DM~G ~ L, with components?’ = —(VN%, VN?). (14)

Matrix L is the standard approximation to the Laplacian operator. The quality of approxin
tion (14) is discussed bellow. Clearly, this approximation is only possible when continuc
pressure interpolations are employed. Likewise, it introduces implicitly the same wro
pressure boundary condition as when the splitting is performed at the continuous level |
[3] for a discussion on boundary conditions for the pressure Poisson equation). In [20],
use of approximation (14) is referred to as “approximate projection.”

After using (10) and (14) the problem to be solved is

1 - . .
Mg(ul’H»l _ Un) + K(Un+9)un+9 + ]/GP” — Fn+9, (15)
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stL(P"+L — Py = DU, (16)

1 N
ME(UrH»l _ Un+l) + G(Pn+l _ )/Pn) —=0. (17)
Once arrived at this point, we may also write the discrete variational equations correspc
ing to this matrix problem, which are

1 ~n—+1

E (uh n+6

—uj, vh) + C(OZ+0, ay 0+

on) +a(@ ) — v (o} va)

= ("1 v, VYo, € Vy,

—st(V(pp™ = yp}). Van) = (an. V- 03Y) Vau € Oy,

%( Z+l - OZ—HL’ vh) - b(PZ+l - )’PZ, I)h) =0 V'Uh € Vh,

where(, is obviously the piecewise continuous function obtained by interpolating fro
the nodal values.

Formally, it is easy to see that the splitting error, introduced by approximation (1
is of orderO (5t) wheny = 0 and of orderO (§12) wheny = 1 (observe from (17) that
o(Jum+t — O+l = st 0 (|P*+L — yP"||) in any norm]| - |)). In order to have the same
error resulting from the splitting and from the original time discretization, we will conside
two sets of parameters. The firstjis= 0, § = 1, which yields the classical first-order
projection scheme discretizing the continuous pressure Poisson equation, and the se
y = 1,6 = 1/2, which yields a (formally) second-order time accurate method.

3. BASIC STABILITY ESTIMATES

Inthis section we obtain stability estimates for the two schemes described above. We s
that there is a certain pressure stabilédgardless of any compatibility requirement betweer
the velocity and pressure approximatiotrs order to understand how is this possible, we
show first how the fractional step scheme (15)—(17) can be viewestalibizedmonolithic
scheme. This equivalence allows us to predict that there will be a pressure stability inhe
to the formulations.

3.1. Equivalent Stabilized Monolithic Formulations

In problem (15)—(17) we can eliminate eithgor U, and think of the remaining variable
as the approximation to the velocity. These two possibilities lead to two different stabiliz
formulations, as we show now.

Let us start by writing the problem only in termsOf Since

U =0" — stM7IG(P" — yP" Y,
Egs. (15)-(17) can be rewritten as
1 - ~ N ~
M= (U = U + KUHU™Y + G+ y)P" — yP" ] =F"*, (18)

DU — 5rL(P*1 — yP") = 0. (19)
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In the caser = 0, this formulation can be viewed astbilizedfinite element method, the
stabilization effect coming from the pressure Laplacianin the discrete continuity Eq. (19)
a similar way to other popular methods such as Galerkin/Least-Squares [32—34]. Excep
the parameter multiplying, which now isé¢, the formulation is similar to the stabilization
method analyzed in [35]. This observation was first pointed out in [36]. Let us remark tt
the use ol as the velocity variable is also proposed in [37].

An additional comment is that, even though the pressure gradient is treated explicitl
(18), the resulting scheme turns out todtablein time. This results from the forthcoming
analysis.

A different approach was advocated in [30]. The idea is to write the problem in terms
U rather tharl. Since

On+l — Un+l + 8[M71G(Pn+l _ )/Pn), (20)

Egs. (15)-(17) can be also rewritten as

1
MG U= U + KUTOU  BU) £GP =R

DU + 81(DM71G — L)(P"*1 — yP") = 0,
whereE(U"*?) can be thought of as the splitting error, and is given by

E(Un+0) — K(Sn+0)Un+9 + K(Un+9)sn+9 + K(Sn+9)sn+0
S0 = gstMIG (P — P,

Clearly, E(U"*?) is formally of orderO (s:1*7).

Consider again the case= 0 (what happens when = 1 is analyzed later). The stabi-
lization effect now comes from the tersnBP”**, whereB := DM~1G — L. Itis shown in
[38] that this matrix igpositive semi-definitd-or completeness, let us provide the (simple)
proof here. This will allow us to introduce some of the concepts used in Section 4.

Let us consider the vector spag =V, + VQy, whereV Q;, denotes the space of
vector functions which are gradients of functiongin. If n1 is the dimension oV and
n1 + n23 the dimension ok, it can be split as

En=Vi®Vj =Spar{vy, ..., v, } @ Spar{v}.... v}, }.

Let g5, be an arbitrary element i@, andQ the array of nodal values @f,, and consider
the decomposition

ny nz3

1

Vg =m1+ w3 = E Iy pvr + E Mo3xv), m1€Vy, mzeVy,
k=1 k=1

wherell; andIlp3 are the arrays of nodal valuessef andm,3, respectively. We have that

—Q'LQ=/ |th|2dQ=1'[1.M1‘[1+/ 23 - w3 ds2,
Q Q
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and, on the other hand,l\';ﬂl.;1 are the components M1,

ny

Q-DM'GQ=- )" </quh.v,- dQ)Mijl(/quh.vj dQ)

= — Z Z Hl,k(/ vV dQ)Mi_le]_J(/ v v dQ)
S Q ' Q

Therefore,
Q-BQ =/ 73 - wp3d2 > 0.
Q

This proves thaB is positive semi-definite and explicitly shows that the components
Vg, controlled by this matrix are those orthogonal to the finite element sgacthat is,
mp3. This fact is used in [22] to prove that approximation (14) yields an error of the sar
order as the pressure interpolation error, and thus it does not deteriorate the accura
the finite element approximation, although it introduces a spurious pressure behavior |
boundaries.

At this point, it is convenient to introduce some additional notatiotX, I¥ are arrays,
{X"}1=0.1,.. .~ IS @ sequence of arrays &f + 1 terms andA a symmetric positive semi-
definite matrix, we define

IX]la == (X - AX)Y/2,

Y- X . . -
IY[l_a := sup (hereA is assumed to be positive definite),
x20 [IX[lA
(X"} et®A) & |X'|a<C<oo Vn=0,1,...,N,
N
(X"} € tP(A) & Zatnxnn/’; <C<o0, 1<p<oo.
n=0

Here and in the followingC denotes a positive constant, not necessarily the same
different appearances.

Aremarkis needed wheh = K. This matrix is not symmetric, but it has the contribution
from the convective term, which is skew-symmetric, and the contribution from the viscc
term, Kyisc, which is symmetric and positive-definite. We will simply write- K(U)U =
U - KyiscU = ||U ||§. We will make use also dft := —L, which is the positive semi-definite
matrix corresponding to the discretization-ofA.

These definitions will allow us to express our stability results in a compact manner. T
basic assumption in all the cases will be that

N
D StIF Pk = C < oo, (22)
n=0

which is the matrix version of the classical condition required for the problem to be wi
posed.
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3.2. Stability of the First-Order Projection Method

We will study now the stability properties of the first-order projection method, whic
corresponds to scheme (15)—(17) wjth= 0 and$ = 1:

1 - N n
Mg(un+l _ Un) + K(Un+l)Un+l — Fn+l’ (23)
stLP"+! = pUrtt, (24)

1 ~
|v|§(u"+l —Uth Pl =o. (25)

The stability result for this scheme reads:

Stability of the first-order projection scheme:
(U} € (M), {0} € £2(M) N £3(K), {(V/51P"} € £2(L)

The stability estimate for the pressure shows that the pressure gradiipiied bysz
is £2 bounded. Whed#: is of order®(h?) this is optimal [33, 35, 36].

To prove the result, let us multiply (23) b)ﬁﬂ]"*l and (25) by 3:U"*+1. Using the
relation Zi(a — b) = a® — b? + (a — b)? it is easily obtained that

”Un-‘rl”ﬁ/l _ ”Un”§/| + ”Un-'rl _ Unnﬁ/l + 8t||0n+1”ﬁ < 8[||Fn+1||3Ka (26)
U2 — O+ 2 Ut — 02 25Ut GPT =0, (27)

On the other hand, from (24) multiplied 1, using the fact thaG = —D!, and (20)
with y = 0, we have

stPrL. Lttt = —yrtt. Pt 4 5 P DMTIGP Y,
25[Un+1 . GPn+l — 28t2pn+l . Bpn+l — 25[||\/§Pn+l||é.

Using thisin (27), adding up (26) and (27) and summing:f¢up to anym < N) it follows
that

(U™} e e2M), {U"} € £2(K), {(~/8iP"} € £3(B).
On the other hand, (25) implies
”Un-‘rl _ 0n+l”§/| — _8t2Pn+l . DM—lGPn-'rl
and from the definition oB it is easy to see that

N N N
Z 8[”\/&Pn+1”5+ — Z(Stz Pn+l . BPn-‘rl + Z “Un-‘rl _ Un-'rl”ﬁ/l
n=0 n=0 n=0

Both terms on the right-hand side are bounded. The first because we already know
{(/8tP"} € £2(B), and the second because it is part of the contribution from (27) when it
added up with (26) and summed forTherefore,

(V8tP") € ¢3(LT)
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It remains to show thatU"} € £°°(M), which follows easily adding up (26) and (27)
evaluated at instead ofz + 1 and summing fon.

3.3. Stability of the Second-Order Scheme

The second-order scheme corresponds to the chgieced andd = 1/2 in (15)—(17),
that is,

Mi(oirkl _ U”) + K(0n+l/2)0n+l/2 +GP" = Fn+l/2 (28)
ot )
sL(P+L — pry — DU, 29
1 N
ME(U’T-'F]- — Un-'rl) + G(Pn+l _ Pn) —0. (30)

We will take P = 0. For this method, the stability result is:

Stability of the second-order scheme:
Uy e e®M), {U") e ey, {(UM2) e ¢(K),
{8tP"} € £2°(LT), {J/818P"} € ¢3(LT)

Note that the pressure stability is now weaker than in the previous case. Let us provet
estimates. Multiplying (28) by&U"*1/2 = §¢(U"*+1 + U") and (30) bysr (U"+1 + Ut
it is found that

" 2 2
[V A (VAT

”Un+l”§/l _ ||0n+l||§/l + 5l(Un+l + 0n+l) X G(Pn+l —P" =0.

+ 81| 02|+ 810+ UMGP™HE < Cor|FTHL2
(31)
Adding up these two expressions we find that
U2, — (U + 8| 02 % 4 5107t gP
+ 81U - GP" 4 §tU"TL . GsP" < Cor||FTT)2 (32)
From (29) it is easily found that
8t0n+l . Gpn+1 — —8[Pn+l . D0n+l — —8[2 Pn+1 . LsP"
812

= 7(||P"+1||ﬁ+ — IP™ 1124 + I8P 12.). (33)

On the other hand, (30) implies
Un-‘rl — Un-‘rl _ StM_lG(SPn
and therefore

stU" . GP" = —§tP" . DU" = —&tP - D(U" — s:M~1GsP" 1)
= —8tP" . (stLsP" ! — ssDM~LGsP" 1)

. 812 _ _
= 0r%P" - BaP" Tt = —-(IP"IIg — IP" Mg + I5P"~HIE).  (34)
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Likewise,

stU"TL. GsP" = —815P" - DU = —5t5P" . DU — s:M~1GsP")
= —8t6P" . (5tLSP" — 5tDM~1GsP")
= 81%5P" - BSP" = 8t(|v/518P" 3. (35)

Using (33)—(35) in (32), taking® = P~1 = 0 and summing for we conclude that
(UM e eV, (0"TY2) ¢ 2(K), {8tP") € e°(LY), (/818P"} e ¢3(LT).
It remains to show tha(lfJ”} € £°(M). From (29) we have that
5:U"L . GSP" = —5:sP" DU = 812||8P" |2,
which substituted in (31) yields, after making use of (35),
10412 = U2, + 8e2)5P" |2, + 5721 5P 3.

The result follows noting that all the right-hand side terms¢&tesequences.

4. PRESSURE STABILIZED SCHEMES

4.1. Pressure Stabilization

It has been shown in the previous section that the pressure stability of both the first--
second-order schemes depends on the time step size. It can be anticipatett tkatafy
small, stability problems may occur, especially for the second-order scheme. In orde
avoid this, one can resort tostabilizedformulation, in the same spirit as for monolithic
schemes.

Since the stability of the first order scheme is known to be adequate §vtisriaken
close to the critical time step of the explicit scherfie£{ 0 in (5)), it seems natural to devise
a stabilized formulation which inherits the stabilization effect of this first order schem
This idea was first developed in [22] for the Stokes problem, and is briefly reproduced h
for the transient Navier—Stokes equations and used in conjunction with a fractional s
method.

Let D, M, andG be the matrices with the same componenf® ad, andG, respectively,
but letting the velocity shape functions run over the boundary nodes also. Starting with
monolithic time discretization, the stabilized formulation we consider is

Mg, U" + KU Ut  GP"HE = Frt?,
DU 4+ (D" — LP"tY) = 0,
ML = GPr,
wherell is an auxiliary variable, which may be treated either implicitl§ i 1 or explicitly

if 8 = 0, andr is a stabilization parameter which depends on the local element sizes. For
sake of simplicity in the exposition, we will take the finite element meshes quasi-unifor
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and thusr will depend only on the diameter of the finite element partifioifhe stability
and convergence analysis dictates that it must behave as
h2
T<C—
Vv
for viscous dominated cases (an appropriate choice for the constant i/4 when linear
elements are used). In general, it can be taken close to the critical time step of the exy
time integration of (5) and (6) (see [22, 24] for further discussion). Nevertheless, the ex
value ofz is irrelevant for our discussion.
To see that the modified monolithic problem will inherit the type of stability of the first
order projection method, note thatdf= 1 andIl is eliminated, the modified continuity
equation is

putl 4 BP"tl1 =0, B:=DM G-

which is similar to (21) withy = 0.

The reason for having modified matricBs M andG to D, M and G, respectively, is
that in this way the modified monolithic problem does not suffer from spurious pressi
boundary layers, as it happens for the first-order projection scheme (see [22] for the ana
of this paint).

For the monolithic scheme we may use the same approximations (10) and (14) as fo
nonstabilized (Galerkin) formulation to arrive to the split problem:

M%(Uml — U + KO0 4GP =
StIL(P™L — yP7y 4 7 (LP™L — DAy = DO,
M(S_lt(un+l — Oy 4GP — Py = 0
M+ — Gprtl

The variational statement corresponding to this matrix problem, which we will use in tl
section, consists of findingj ** € Vj, pi™ € 0, Uttt € Vy, andr ™t € V), such that

1
S (07—t vn) (057 057 wn) + a (05 on) — b (v vn)
= ("% v,) Vo, € Vy, (36)

=5t(V(pitt = vpp), Van) — T (VP — 7P Van)

= (qn, V- 0} Vau € Oy, (37)
81t (Ut —aptt vg) —b(pi ™ —yp va) =0 Vo, € Vy, (38)
( Z—‘rl, ﬂh) = (VPZ—HL, T[h) Vﬂh € \7h, (39)

whereV, is the spacé&/, enlarged with the continuous vector functions associated to tt
boundary nodes. The meaning of the new auxiliary variaflés clearly observed from
(39): Itis the projection of the pressure gradi®n, ontoV,.
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In the following analysis, we will need several projections\gb,, all of them with
respect to thé.?-inner product. These projections are

1. projection ontoV ,
m2: projection ontoV ;- NV,

N ~ 1
m3. projection ontov, .

Likewise, we will denoter;; := x; + m ;. Observe in particular that1, = ;, and that,
using these projections, (38) implies

uZ+l = OZJrl - St(ytT'l —yxl). (40)

We will see from the following analysis that the terms multipliedrtyyrovide control on
w3, that is, the component of the pressure gradient orthogonal to the space of contint
vector fields. Control oty can be directly obtained from the momentum equation, as w
will see, whereas control ovar; follows from the condition

IVprll = Clmall + llsl), (41)

which is assumed to hold for any, € Q;. This condition is studied in detail in [22]. In
particular, it is shown to hold when equal interpolation is used for the velocity componel
and the pressure, the situation in which we are interested.

Similarly to Section 3, the stability estimates we will obtain here will be expressed usil
the following notation. Le{ "} be a sequence of generic functions (scalar or vectorial
We define

("1 et®L>D & ||f"|<C<o0 Vn=0,1,...,N,
N

/"y e P & Y st f"|IP <C <00, 1<p<oo,
n=0

N
{f"y e 2(HY & Y 81l f"1f < € < oo,
n=0

where| - || is the standard.?2 norm and|| - ||1 is the H1 norm, that is, the sum of the?
norm of a function and th&2 norm of its gradient. We recall that for functiogis/anishing
on a2, || |1 is equivalent td|V f||. Likewise, we will use the fact thaf(L?) c ¢X(L?),
valid for finite time intervals of analysis.

Finally, let us state the condition analogous to (22) in the variational setting that we
now, which is

N
D St < C < oo,
n=0

where|| - ||_1 is the dual norm of] - ||1.
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4.2. Stability of the Stabilized First-Order Scheme

The first-order stabilized scheme is obtained taking 0 and9 = 1in (36)—(39), which
yields

Slt (Ot — i, vg) + (O 0 o) +a (00 ) = (£ ) Vo, € Vi, (42)
5t (VP Van) — o (VoI = 2P Vvan) = (a0, V- 01T Vg€ 0n (43)
5]; (UZJrl 02+l, h) — b(pZJrl, vh) =0 Vv, eVy. (44)

The stability result for this formulation is:

Stability of the stabilized first-order scheme:
lur e e°(L?), {03} e €22 N e2HY,
(Vorvp} e e2(L?), {JTVpr}ediL?

From this we see that, on top of the stability estimate of the scheme wtl, now we
have an additional one which is optimakif= O (#2).

Let us proceed to prove these stability results. Taking= 2(St”“rl in (42) andv;, =
2stu L in (44) itis found that

51 = up 2+ 05 = w2+ 8o | VO P < cory 722, (48)
Ui 1% = D052 4 Jup ™ — 0 4 o (p ™ v - ) = 0 (46)
On the other hand, from (43) and using (40) (with= 0) we have that

(ph+l V. un+l) (Vpn+l An+l) St(ver»l n+l)
— St(Vph+l Vpn+l) + _C(Vpln1+l Vpn+l ﬂz+ﬁ) _ &(n:frl nTrl)
= 8t|n "“H +r(Vpptt vpptt - Z*ﬁ). (47)
Calling 8 := 1 — B, the second term in the right-hand side can be written as
(Vpitt, vt - Z+ﬂ) (Vpitt, n+1) + BVt it — )

=[5+ 5 (|| A e LA R L )
Using this in (47), the result in (46), adding it with (45), and summing:fitis found that
{urt e e=(L?), {03} e 2(HY,
(Votmls) € £2(L?). |JTrli} e 3(L2).
On the other hand, from (40) again,

A AN A LA

h
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and since the sum for of the left-hand side is bounded (it appears when (45) and (4¢
are added) we have thay/srx’} € £2(L?), which together with the fact that/str’} €
€2(L?), implies that{/5:V !} € £2(L?).

Stability of {\/zx|} is more delicate. It is provided by the momentum equation actuall
solved by the fractional scheme, which after adding (42) and (44) is found to be

1 (un+l n+l ~An+1
st h ’

Uy, vg) 4 c(05 7, 05 vp) + a(OZH, v) + (VpZH, vy) = ( £+ ).

n+1

Takingv, = ="~ and using the standard inverse estimate (see e.g., [39])

Ci
w5ty < S ey (48)
valid for quasi-uniform finite element partitions, we have
C.
17 < = g+ Hu”“ i [l
, N Ci
+ (Va0 + N D = (49)

where N, and N, are the norms of the formg and ¢, respectively, and we have used
the continuity ofz andc, thatis,a(u, v) < N, |lull1]lv]l1, c(u, v, w) < N |[ull1]|v]l1]|w]l1.
Dividing by ||7r”+1|| summing fom, noting that,/t < Ch and using the previous stability
bounds, it is found thaf./zx;} € ¢2(L?). This, together with the fact thdt/zn%} €
¢2(L?) and assumption (41), allows us to conclude th@t V p!'} € £2(L?). Observe that
the reason why this result can not be improvedJ&V p)} € £%(L?) is the presence of
the termN, || A"+1||1 in (49) (see [24] for a discussion about the possibility to improve thi
result for the monolithic scheme).

Finally, the fact thafd;} £°°(L?) follows adding (45) and (46) evaluatedrginstead
of n + 1 and summing fon.

4.3. Stability of the Stabilized Second-Order Scheme

To conclude this section, let us study the stabilized second-order method, whick
obtained selecting = 1 andf = 1/2 in (36)—(39):

1 A AT AT AT
L0570 )+ (02 0 )+ a0 ) = (o )

= ("2 ) Vo, e Vy, (50)
—SZ(V( n+l_ph) th) —‘L’(Vpn+l FZ-HS,VQh)

= (qn. V-0 Vg € O, (51)
8—];(UZ+1 - OZ+1, v ) b(pZJrl — Dps vh) =0 Vv, eVy. (52)
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Contrary to what happened for the first-order scheme,weweed to require that < C3t.
The stability we are able to prove in this case is:

Stability of the stabilized second-order scheme:
{ur} e e=?), [} ee>?, {u?) e 2HY,
[6:Vp)} e e>(L?), {Vorvepr} e t?2(L?), {JTVpr}ed(L?)

The useful pressure stability estimate in this case is the last one, which again is opti
whent = O(h?).

The proof-strategy is similar to the previous cases. Taking 28t”1+1/2 in (50) and
v, = 81U+ 07 in (52) it is found that

J05 2] = |+ 8o VG212 — 6t (pf, v - 03 F) = 81 (pj v - i)
< C(St” fn+1/2||2 (53)
o7 02 = (o = ¥ ) = (o V05 =

Adding these two expressions we get

||U"“|| —Huh|| +<SIVHVA"+1/2|| o1(p, V- u) = 0t (P = Py, V- Ul

We need to deal with the different terms involving the pressure in the left-hand side of t
inequality. Using (51) and (52), as well as (40), the various terms can be written as

(P V- up) = —(py, V -iy) + 8t (py, V- (w] — ]~ l))

= 81(Vép)~ ! Vi) + (Vo — n+ﬁ ! ,Vp})
—81(Vpy, w} —mi~ l)
= dt(nhy— 3", Vip) + 1 (Vph — T V)

= oIl — s 2+ s — s )
+o(Vph — P V) (55)
—(8pp, VUt = —(spp, V- O - 8r(p, V- (w1 — 7))
= 5t(Vepp, Vop) + t(Vpitt — 2P vspl)
— 8t(Vopy, wi Tt — x})
= 8t |mhy — | * + T (VP -yt Vap)) (56)
(Ph+l v. un+1) _St(V(Sph,Vp”+1)+r(Vp”+1 +/3 Vpn+1)
=§(HVPZ+1H — VAP + 1Vt = Vi)

+ t(Vp"+l +/3 Vpn+1) (57)
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The terms multiplied by in these expressions can be written as

(VPZ+1 +/3 Vpn+l) ( n+1 Vpn+l) + ﬁ( n+l _ nh’ Vanrl)

= =577+ 5 (!Iﬂh“H A R LA
(Vo =y vepp) = ( L Vep;) + By - mh, Voph)

(|| S = sl o e = ) + Bt -

Using these expressions in (55)—(57), the result in (54), and summingtfar found that
[ur} e e>?), [o}T?) e 2(HY),
{6:Vpr} e e®(L?), {Vorvspr} e t?(L?), {Jrrli) e 3(L?).

On the other hand, from (53), the inequality < (a2 + b?)/2 and these stability results it
is readily seen that

A 1,
o5 1% < 10517+ Clup ) + 82 Vo |+ aei £7272)2,).

from where((}} € £*°(L?).
It remains to bound in ¢1(L?). Using the same strategy as for the first-order schem
(see (49)), we now have that

82‘«/—”” +1H < «/—||un+1 uhH +8l‘(N HAn+1/2H1+N HAnJrl/ZH )
+ 8t £77Y2) 4

When summing for, the only term that still has not been shown to be bounded is the fir
on the right-hand side. Bounding it will conclude the proof. Since

N-1
Z Vrutt - < Y vEfutt - et Z N [anE U] I )
n=0 n=0

and, from (40) and the assumptiorn< Cét,

2 VA - o = 2 NI

N-1
<C > 82| Vot — vl P < oo,
n=0

it only remains to bound the last term in (58). Taking= 0 artt

inverse estimate similar to (48), it is found that

— up in (50) and using an

1
G —u)® < Aot - up | + B

7
Ay 1= Naf| 0577 + Nef[ 0

By = (p. V- 0570) = (P V- ).

5 o

An+l/2 An+l/2Hl 1 fn+l/2||7l,
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Using the fact that ik2 < bx + ¢ thenx < 2b + 2,/c, we obtain

An+1 _n i N-1
ZfH w <c( Y otAn+ Y Vorviy/B, ).
n=0 n=0

The first term on the right-hand side is bounded, and therefore it only remains to obta
bound for the second. Sinee< C$t,

N-1 N-1
Y VotyT/B, <C Y 6tB,.
n=0 n=0

From (55) we have
—Z& Ph V- ) <—28t (3l = 551" + |3s — 7551 %)

+ zan[mn T R o G PR ) I

and similarly to (55)—(57) we can obtain

N-1
25 (ph,v An+1)
n=0
N-1
= [ 8t2(V8pZ,Vp;l) 8tt(Vp”+1 nZJrﬁ,VpZ)]
n=0
1
= X [ - 9+ 190t v
n=0

—Stt(mf ntl , ) — strB(n) ntl _ ny, nZ):|

= C Y o2 (|Vpy = Vo P+ |y P + )+ Bl - ).
n=0

From the results already obtained, the last term on the right-hand side is bounded.
completes the proof of stability.

5. PRESSURE AND CONVECTION STABILIZATION

The pressure stabilization procedure introduced in the previous section consists of ad
the term

(Vpl’l+l _ n,Z’ th)

to the variational equations of the Galerkin method (either to the monolithic or to t
fractional step time discretization). We have considered directly thegas@, which is
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more appealing from the computational point of view and has the same stability proper
as the caseg = 1. This stabilizing term can be thought of as a least-squares form
the component of the pressure gradient orthogonal to the finite element sgé&e;
Vp”+l ”*l . If this allows the stabilization of the pressure, the idea that naturally aris
is to use the same strategy to stabilize convection when the convective term dominate:
viscous one. This idea is developed in [25]. Here we describe only the final outcome, wh
consists of adding

(un+0 VA”+9+Vp"+l—nh, UZ+9 Vvh“rVQh)

to the variational equations of the Galerkin method. The contribution to the moment
equation is obtained when the pressure test functigp is 0, whereas the contribution to
the continuity equation is found whan = 0. The final result is that the equations to be
solved when fractional step methods are used are

1 ~An+1

a

5 (i

+ t(A”+9 VA"+9 +Vpp —my. 0 ”+9 Vvh) (F719 vy) Yo, € Vy,

n+6

—u,vp) + (OO 000 ) +a(0pt0, vi) — v (Pl va)

_ St(V( n+l Vph) th) _ _L,( n+0 Vun+9 + Vanrl _ ”Z’ th)
= (qn. V-0 Vg € O,

1 ~ 1 1
Upt — 03 o) — (Pt = yph vn) =0 Yo, € Vy,

i
(”Tlv ) = (0 e vapt? + VP"H, nh)  Yan € Vi,

which replace (36)—(39). It has to be observed that the pressure in the first equatio
treated explicitly, in order to keep the uncoupling of the velocity and pressure calculatio
Observe also that now;, has the meaning of being the projectiorigf- V0, + V pj, onto
the finite element space.

Let us finally remark that the possibility of treating explicitly the projectigngreatly
simplifies the numerical implementation of this stabilization technique. Apart from tt
evaluation of the several additional terms in the equations for the velocity and the press
only anL?2 projection needs to be performed at the end of each time step. This is com
tationally very inexpensive, especially if the Gramm mawbinvolved in the process is
approximated by the diagonal one obtained from a standard lumping technique.

6. NUMERICAL RESULTS

In this section we present the result of two simple 2-D numerical experiments to illustr:
the practical impact of the theoretical findings. The objective of the first is to show tl
dependence of the pressure stability on the time step, whereas the second is mainly inte
to check the accuracy, a point that has been mentioned but not analyzed.

6.1. Cavity Flow Problem

This example is the classical cavity flow problem. The Navier—Stokes equations
solved in the unit square with zero velocities everywhere on the boundary except on
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top, where a tangent unit velocity is prescribed. The viscosity has been takea 891,
which yields a Reynolds number of 100. A mesh of2@0 four-noded bilinear elements
has been employed. The flow equations have been advanced in time until the steady-
has been reached. The critical time step for the explicit scheme has been estimated to

4 2Uu\7?
Sterit = | — + — 59
crit (h2 + b ) ) (59)

FIG. 1. Pressure contours for the cavity flow-problem using the first-order scheme. From the top to
bottom:§z = 0.1 8tcrit, 8t = Sterit, andst = 1.0.
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FIG. 2. Pressure contours for the cavity flow problem using the second-order scheme. From the top to
bottom:§r = 0.1 8tcrit, 8t = Stcrit, anddr = 1.0.

where = 0.05 is the element size and = 1 the characteristic velocity. This yields
Sterit = 1/56.

Pressure contours using the original first-order scheme are shown in Fig. 1. It is cle:
observed there that fér = 0.1 8¢t Some oscillations appear, whereasfoe= §t¢rit the
solution is acceptable. Likewise, whénis large (1 in this case), the solution is definitely
overdiffusive. This shows the dependence of the pressure stability on the time step siz

The same cases have been computed with the second-order scheme. From Fig. 2, it i
that only for very large values @t is the weak stability inherent to the scheme activated
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FIG.3. Pressure contours for the cavity flow problem using the second-order scheme with stabilization. Fi
the top to the bottomis = 0.1 S1cyit, 8¢ = Stcrit, andst = 1.0.

Contrary to the previous case, fér = 0.1 dzcit and st = Stcrit the pressure solution is
completely oscillatory.

The final set of results for this problem shown in Fig. 3 corresponds to the stabiliz
formulation using the second-order scheme. The stability paramétas been computed
as the critical time step given by (59) but for each element, talkirag the mean element
velocity. The pressure solution is correct for all the values of

Even though the implicit schemes we have considered allow us to use time steps as |
as desired, it is known that in practice the steady-state is reached faster (both in real
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FIG. 4. Velocity convergence toward the steady-state for the cavity flow problem. From the top to the botto
first-order scheme, second-order scheme, and second-order scheme with stabilization.

and in CPU time) using: close toézcrit. We have also used this example to demonstrat
this. Converge to the steady-state for the different formulations employed is shown
Fig. 4, where the residual is measureduds — U"—1|/|Ut — U°| (here| - | is the standard
Euclidean norm of an array). From Fig. 5 it is seen that this dependerfzésimilar for

all the schemes.

6.2. A Test with Analytical Solution

We have referred to the two formulations analyzed throughout the paperfastioeder
projection method and secondorder scheme. In this example we test the accuracy c
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FIG.5. Velocity convergence toward the steady-state for the cavity flow problem. From the top to the bottc
8t = 0.1 8tcrit, 8t = Stcrit, anddr = 1.0.

these formulations. Since we have seen that the second-order one is unstable, we
combined it with the pressure stabilization technigue, with the parametmnputed as in
the previous test.

In this example we solve again the Navier—Stokes equations in the unit square \
homogeneous velocity conditions and taking the force vector so as to have as exact sol

ur(x1, x2,1) = f(xy) f'(x2)g(1), wurlx1, x2,1) = —f'(x1) f(x2)g (1),
(60)
f(x) =1003(1—x)%,  g(r) = cogmt) exp(—1),
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A

FIG. 6. Velocity vectors for the test with analytical solution.

with two solutions for the pressure, namely= 0 andp = 100x2. The time interval of
analysis is [0, 1] and the viscosity= 0.1. A mesh of 40x 40 bilinear elements has been
employed to discretize the computational domain. The velocity solutioe=at is shown

in Fig. 6.

Convergence of the time approximation for the case 0 and measured at=1 is
plotted in Fig. 7, where “total” refers to the scheme wjth= 0 in (15)—(17), and “incre-
mental” refers to the cage = 1. The error has been computedlds_1 — Uexact/|Uexacl,
whereU,— is the numerical solution at= 1, andUexactiS the array of nodal values of the
exact velocity at = 1. Since the exact pressureis= 0, the value ofs does not affect the

0.1 |

log(E)

First order, total ——

Second order, total —x—
First order, incremental —-—
Second order, incremental —&—
Slope =1 ~—u— 7]
Slope =2 ——o—

0.01

0.01 0.1
log(dt)

FIG.7. Convergence for the test with analytical solution. Case 0.
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x-velocity

_0_8 1 1 I
0 0.2 0.4 0.8 0.8 1 1.2

Time

FIG. 8. Evolution of thex-velocity at (0.75, 0.75) using the first-order scheme. Gase0.

accuracy in this example. From Fig. 7 it is seen that 1 gives a first-order approximation

andd = 1/2 a second-order one. The evolution of the first velocity compangat a point

is depicted in Fig. 8 and Fig. 9 for the first- and second-order schemes, respectively.
The evolution to the steady-state wheg) is replaced by 1 in (60) is shown in Fig. 10.

As in the previous example, it is seen that large valuedr ahay yield slower rates of

convergence. Finally, Fig. 11 shows the error at the steady-state as a funciiowloén

p = 100x?, measuring the well-known property that for the first-order scheme the soluti

depends largely oéy.

7. SUMMARY OF MAIN RESULTS AND CONCLUSIONS

The main objective of this paper has been to clarify the role of the pressure Pois
equation in the pressure stability of fractional step methods for incompressible flows

x-velocity

0 0.2 0.4 0.6 0.8 1 1.2
Time

FIG. 9. Evolution of thex-velocity at (0.75, 0.75) using the second-order scheme. gas®.
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FIG. 10. Convergence to the steady-state for the test with analytical solution (T: total, I: incremental). C¢

p = 100¢2.

our case using the finite element method for the space discretization. The basic stak
results for the two schemes analyzed are:

First order: {81V pl} € €2(L?), {JTVpl} e eX(L?)
Second order{§tVp'} € ¢°(L?), {/5:Vspr} e €3(L?), {JTVp)} e tH(L?)

Inspecting these results, the main conclusions that can be drawn include:

e For the original ¢ = 0) first-order scheme, pressure is stable, but the parameter tt
controls the amount of stability is the time step size, and therefore:
o If 8¢ is very small, pressure oscillations may appear.

Total ~—+—
Incremental —x— ]

0.1 ¢ 5
)
5
o
0.01 __
0.001 o
0.0001 0.001 0.01

log(dt)

FIG. 11. Error at the steady-state as a function of the time step for the test with analytical solution. C¢
2
p = 100¢2.
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e If 8¢ islarge, the method may be overdiffusive. This limits the applicability of implici
schemes, since appropriate valuesoadequate for stability turn out to be close to the
critical time step of explicit schemeg & 0).

e The original ¢ = 0) second-order method has a very poor pressure stability. At ti
steady-state, only that||V p, || < C < oo can be ensured, whereas the optimum would b
to have control oR/3¢||V py ||. However, ifsz is very large, the control oy ||V py, || can be
enough to obtain stable pressures.

e Pressure stability in stabilized schemes depends on an algorithmic paranveésh
may be chosen independentof(except for the conditiom < C§r needed for the second-
order scheme). Both for the first- and for the second-order methods, this stabilization all
us to free the link stability+. For the first-order schemé; can be arbitrarily small, and
for the second-order one we improve the estin{at® p; } < £%°(L?). In both cases, we
are left with{\/zV pi} € £1(L?).

A very important fact from the computational point of view is that the pressure gradie
projection for stabilized schemasay be treated explicitlgwhich corresponds to taking
B = 0in (37)). It has been shown that this does not upset stability. Finally, let us ment
that convection dominated flows can be stabilized by considering a natural extension o
pressure stabilization technique which has been described in Section 5.
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