
Journal of Computational Physics170,112–140 (2001)
doi:10.1006/jcph.2001.6725, available online at http://www.idealibrary.com on

Pressure Stability in Fractional Step Finite
Element Methods for Incompressible Flows

Ramon Codina

Universitat Polit̀ecnica de Catalunya, Jordi Girona 1-3, Edifici C1, 08034 Barcelona, Spain
E-mail: ramon.codina@upc.es

Received March 17, 2000; revised November 30, 2000

The objective of this paper is to analyze the pressure stability of fractional step
finite element methods for incompressible flows that use a pressure Poisson equation.
For the classical first-order projection method, it is shown that there is a pressure
control which depends on the time step size, and therefore there is a lower bound for
this time step for stability reasons. The situation is much worse for a second-order
scheme in which part of the pressure gradient is kept in the momentum equation. The
pressure stability in this case is extremely weak. To overcome these shortcomings, a
stabilized fractional step finite element method is also considered, and its stability is
analyzed. Some simple numerical examples are presented to support the theoretical
results. c© 2001 Academic Press

1. INTRODUCTION

Fractional step methods for the incompressible Navier–Stokes equations have enjoyed
widespread popularity since the original works of Chorin [1] and Temam [2]. The reason
for this relies on the computational efficiency of these methods (see e.g., [3–6]), basically
because of the uncoupling of the pressure from the velocity components. However, several
issues related to these methods still deserve further analysis, and perhaps the most salient
of these are the behavior of the computed pressure near boundaries and the stability of the
pressure itself.

Referring to the pressure boundary conditions, it is well known that numerical boundary
layers may appear. The reason for this can be explained by considering the pressure
boundary condition associated to the splitting of the continuous problem, as proposed in
[1, 2]. Although relevant in some cases, this misbehavior does not affect the global pressure
convergence [7], and can be shown to be less dramatic than expected in most situations
[8]. In any case, any reference to the correct boundary conditions for the fractional step
scheme can be skipped by considering the splitting at the purely algebraic level, once the
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space discretization has been performed. This is the approach advocated in [9, 10] and that
we will follow here.

The study of the pressure stability for schemes that use a pressure Poisson equation is the
main concern of this paper. Surprisingly, this stability is rarely made explicit. It is normally
hidden by the convergence analysis, when it is required that the time step size besmall
enough. In general, analyses at the continuous space level are based on the stability of the
continuous pressure [11, 12], whereas when the space is discretized it relies on the stability
of this discretization, either the finite element method as in [13] or a very simple finite
difference setting as in [14]. Other attempts to study the pressure stability are presented in
[15], where results much weaker than those presented here are stated (only for the scheme
of Section 3.2 and assuming the time step size sufficiently large).

The results to be presented in this paper refer to two types of fractional step schemes,
namely, the classical first-order projection method and a second-order algorithm based
on the Crank–Nicolson discretization for the viscous and convective terms and a second-
order pressure splitting, leaving the pressure gradient at a given time level in the first
step and computing its increment in the second one (see [12, 16–19] for different ideas
related to second-order schemes). First, the stability of these schemes in the context of
a finite element space discretization is analyzed in Section 3 using matrix arguments.
It is shown that a certain pressure stability can be expected, regardless of the particular
discrete velocity-pressurespaces chosen. In fact, sometimes fractional step schemes that use
the pressure Poisson equation are considered as “stabilized” [20]. However, this stability
can be useful for the first-order scheme, but it is certainly too weak for the second-
order one. In both cases, though, it is given by the time step size, and hence this size
is limited from below simply to stabilize the space discretization. It is worth noting that
this dependence of the stabilization terms on the time step size also appears in some
formulations aiming to stabilizeconvection, and not the velocity-pressure interpolation (see
[21] for a version of the Characteristic-Galerkin method where this fact is clearly demons-
trated).

To avoid the bond described, a pressure stabilized scheme is proposed in Section 4.
Again, the stability analysis of both the first- and second-order fractional step schemes is
undertaken, now using a variational setting rather than the previous matrix language. This
stabilization is intended to mimic the stabilizing effect of the first-order projection method.
The method was originally presented in [22] for the steady Stokes problem, extended
to the nonlinear case in [23], and to the transient problem using a monolithic time dis-
cretization in [24]. In spite of the fact that the variational approach used in Section 4
supersedes the matrix analysis of Section 3, the latter is extremely useful to understand the
stabilization mechanism introduced by the splitting and, more precisely, by approximation
(14) in Section 2.

The final step is to extend the previous stabilization method to the case in which con-
vection needs also to be stabilized. The resulting formulation, based on the ideas of [25], is
presented in Section 5. The formulation is able to have control over the pressure gradient
and the nonlinear convective term while yielding very accurate numerical results, much less
overdiffusive than classical pressure stabilization methods or upwind techniques designed
to deal with convection dominated flows.

Some numerical results are presented in Section 6. In spite of their simplicity, they clearly
show that the theoretical predictions of the paper are encountered in practice. The summary
of the most salient results and the conclusions are finally presented in Section 7.



114 RAMON CODINA

2. FRACTIONAL STEP METHODS FOR THE NAVIER–STOKES EQUATIONS

2.1. Problem Statement

2.1.1. Continuous problem.In the simplest possible setting, the incompressible Navier–
Stokes equations for a fluid moving in a domain� of Rd (d = 2 or 3) in a time interval
[0, T ] are

∂t u + u · ∇u − ν1u + ∇p = f in �, t ∈ (0, T ), (1)

∇ · u = 0 in �, t ∈ (0, T ), (2)

whereu is the velocity field,p the kinematic pressure,f the vector field of body forces, and
ν > 0 the kinematic viscosity. These equations need to be supplied with an initial condition
for the velocity and a boundary condition, which, for simplicity, we will take as the simple
homogeneous Dirichlet conditionu = 0 on∂�, t ∈ [0, T ].

The finite element space discretization that we will consider is based on the variational
formulation of the problem. In order to write it, let us introduce the forms

a(u, v) := ν(∇u, ∇v), b(q, v) := (q,∇ · u),

c(u, v,w) := (u · ∇v,w) + 1
2((∇ · u)v,w),

where (·, ·) denotes the standardL2inner product. In these expressions, for a fixedt ∈ [0, T ],
u,v,w are assumed to belong to the velocity spaceV = [H 1

0 (�)]d of vector functions whose
components and their derivatives are square-integrable and vanish on∂�, andq belongs
to the pressure spaceQ = L2(�)/R of square-integrable functions modulo constants.
Observe thatc corresponds to the skew-symmetric form of the convective term. For exactly
divergence freeu, the second term ofc vanishes. However, it will simplify the analysis of
the discrete problem, where we will often make use of the propertyc(u, v, v) = 0 for all
v ∈ V .

Having introduced this notation, the weak form of problem (1)–(2) consists of findingu
andp such that

(∂t u, v) + c(u, u, v) + a(u, v) − b(p, v) = 〈 f , v〉 ∀v ∈ V ,

b(q, u) = 0 ∀q ∈ Q,

andu satisfying the initial condition. The notation〈 f , v〉 stands for the duality pairing of
v ∈ V and f ∈ [H−1(�)]d (for t ∈ [0, T ]).

2.1.2. Monolithic time discretization.We start by considering the simplest time dis-
cretization of the problem, namely, the generalized trapezoidal rule, and solving for the
velocity and the pressure at the same time. This is what we callmonolithicscheme. Letθ ∈
[0, 1] be a given parameter and consider a partition of [0,T ] into N time steps of (for sim-
plicity) equal sizeδt. Letf be a generic function of time andf n the value off at tn = nδt

or an approximation to it, and letf n+θ := θf n+1 + (1 − θ)f n, δtf
n := (f n+1 − f n)/δt.

Givenun at tn, the time discrete problem consists of findingun+1 andpn+1 at tn+1 as the
solution of

(δt un, v) + c(un+θ , un+θ , v) + a(un+θ , v) − b(pn+1, v) = 〈 f n+θ , v〉 ∀v ∈ V , (3)

b(q, un+1) = 0 ∀q ∈ Q. (4)
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The pressure value computed here has been identified as the pressure evaluated attn+1,
although this is irrelevant for the velocity approximation. The values of interest ofθ

areθ = 1/2, corresponding to the second-order Crank–Nicolson scheme (see [26] for a
thorough analysis of this scheme) andθ = 1, which corresponds to the backward Euler
method. If f is not continuous in time,〈 f n+θ , v〉 can be taken as the time average of〈 f , v〉
over the time step [tn, tn+1].

2.1.3. Finite element discretizations.Let V h be a finite element space to approximate
V , andQh a finite element approximation toQ. Functions inV h need to be continuous
piecewise polynomials, whereas continuity is in principle not required forQh. However,
we will consider only continuous pressure interpolations, for reasons explained below.

The finite element discretization of (3) and (4) reads

(
δt un

h, vh

) + c
(
un+θ

h , un+θ
h , vh

)+ a
(
un+θ

h , vh

)− b
(
pn+1

h , vh

)= 〈 f n+1, vh〉 ∀vh ∈ V h,

b
(
qh, un+1

h

) = 0 ∀qh ∈ Qh.

It is well known that for this discrete problem to be stable the velocity and pressure spaces
need to satisfy the classical inf-sup condition (see e.g., [27]), which in particular precludes
the use of convenientequalvelocity-pressure interpolations. However, it was early noted
that this condition is not required when fractional step methods using a pressure Poisson
equation are employed (see e.g., [20, 28–31]).The analysis and clarification of this situation
is precisely the objective of this paper.

Before presenting the fractional step schemes to be studied, let us introduce the matrix
form of the problem. This is given by

MδtUn + K(Un+θ )Un+θ + GPn+1 = Fn+θ , (5)

DUn+1 = 0, (6)

whereU andP are the arrays of nodal velocities and pressures, respectively. If we denote
the node indexes with superscriptsa, b, the space indexes with subscriptsi, j , and the
standard shape function of nodea by Na , the components of the arrays involved in these
equations are

Mab
ij = (Na,Nb)δij (δij is the Kroneckerδ),

K(Un+θ )ab
ij = (

Na, un+θ
h · ∇Nb

)
δij + 1

2

(
Na,

(∇ · un+θ
h

)
Nb

)
δij + ν(∇Na,∇Nb)δij ,

Gab
i = −(∂iN

a,Nb),

Fa
i = 〈Na, fi〉,

Dab
j = (Na, ∂jN

b).

It is understood that all the arrays are matrices (exceptF, which is a vector) whose compo-
nents are obtained by grouping together the left indexes in the previous expressions (a and
possiblyi) and the right indexes (b and possiblyj ). Note thatG = −Dt .



116 RAMON CODINA

2.2. Fractional Step Schemes

The fractional step schemes we will consider can be introduced at this point, applied to
the fully discrete problem (5)–(6). This is exactly equivalent to

M
1

δt
(Ûn+1 − Un) + K(Un+θ )Un+θ + γ GPn = Fn+θ , (7)

M
1

δt
(Un+1 − Ûn+1) + G(Pn+1 − γ Pn) = 0, (8)

DUn+1 = 0, (9)

whereÛn+1 is an auxiliary variable andγ is a numerical parameter, whose values of interest
are 0 and 1. At this point we can make the essential approximation

K(Un+θ )Un+θ ≈ K(Ûn+θ )Ûn+θ , (10)

whereÛn+θ := θÛn+1 + (1 − θ)Un. ExpressingUn+1 in terms of Ûn+1 using (8) and
inserting the result in (9), the set of equations to be solved is

M
1

δt
(Ûn+1 − Un) + K(Ûn+θ )Ûn+θ + γ GPn = Fn+θ , (11)

δtDM−1G(Pn+1 − γ Pn) = DÛn+1, (12)

M
1

δt
(Un+1 − Ûn+1) + G(Pn+1 − γ Pn) = 0, (13)

which have been ordered according to the sequence of solution, forÛn+1, Pn+1, and
Un+1. This uncoupling of variables has been made possible by (10). This approximation
is interpreted in [9, 10] as anincomplete block LU factorizationof the original problem
(7)–(9). The advantage of this discrete approach is that now there is no question about
the boundary conditions for the intermediate variableÛn+1: since boundary conditions are
incorporated in the discrete problem (5)–(6), the prescriptions forÛn+1 are exactly the
same as for the end-of-step velocityÛn+1.

Even though problems (11)–(13) can be implemented as such, it is very convenient to
make a further approximation. Observe thatDM−1G represents an approximation to the
Laplacian operator. In order to avoid dealing with this matrix (which is computationally
feasible only ifM is approximated by a diagonal matrix), we can approximate

DM−1G ≈ L, with componentsLab = −(∇Na,∇Nb). (14)

Matrix L is the standard approximation to the Laplacian operator. The quality of approxima-
tion (14) is discussed bellow. Clearly, this approximation is only possible when continuous
pressure interpolations are employed. Likewise, it introduces implicitly the same wrong
pressure boundary condition as when the splitting is performed at the continuous level (see
[3] for a discussion on boundary conditions for the pressure Poisson equation). In [20], the
use of approximation (14) is referred to as “approximate projection.”

After using (10) and (14) the problem to be solved is

M
1

δt
(Ûn+1 − Un) + K(Ûn+θ )Ûn+θ + γ GPn = Fn+θ , (15)
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δtL(Pn+1 − γ Pn) = DÛn+1, (16)

M
1

δt
(Un+1 − Ûn+1) + G(Pn+1 − γ Pn) = 0. (17)

Once arrived at this point, we may also write the discrete variational equations correspond-
ing to this matrix problem, which are

1

δt

(
ûn+1

h − un
h, vh

) + c
(
ûn+θ

h , ûn+θ
h , vh

) + a
(
ûn+θ

h , vh

) − γ b
(
pn

h, vh

)

= 〈 f n+1, vh〉 ∀vh ∈ V h,

−δt
(∇(

pn+1
h − γpn

h

)
,∇qh

) = (
qh,∇ · ûn+1

h

) ∀qh ∈ Qh,

1

δt

(
un+1

h − ûn+1
h , vh

) − b
(
pn+1

h − γpn
h, vh

) = 0 ∀vh ∈ Vh,

whereûh is obviously the piecewise continuous function obtained by interpolating from
the nodal valueŝU.

Formally, it is easy to see that the splitting error, introduced by approximation (10),
is of orderO(δt) whenγ = 0 and of orderO(δt2) whenγ = 1 (observe from (17) that
O(‖Un+1 − Ûn+1‖) = δtO(‖Pn+1 − γ Pn‖) in any norm‖ · ‖). In order to have the same
error resulting from the splitting and from the original time discretization, we will consider
two sets of parameters. The first isγ = 0, θ = 1, which yields the classical first-order
projection scheme discretizing the continuous pressure Poisson equation, and the second
γ = 1, θ = 1/2, which yields a (formally) second-order time accurate method.

3. BASIC STABILITY ESTIMATES

In this section we obtain stability estimates for the two schemes described above. We show
that there is a certain pressure stabilityregardless of any compatibility requirement between
the velocity and pressure approximations. In order to understand how is this possible, we
show first how the fractional step scheme (15)–(17)can be viewed as astabilizedmonolithic
scheme. This equivalence allows us to predict that there will be a pressure stability inherent
to the formulations.

3.1. Equivalent Stabilized Monolithic Formulations

In problem (15)–(17) we can eliminate eitherÛ or U, and think of the remaining variable
as the approximation to the velocity. These two possibilities lead to two different stabilized
formulations, as we show now.

Let us start by writing the problem only in terms ofÛ. Since

Un = Ûn − δtM−1G(Pn − γ Pn−1),

Eqs. (15)–(17) can be rewritten as

M
1

δt
(Ûn+1 − Ûn) + K(Ûn+θ )Ûn+θ + G[(1 + γ )Pn − γ Pn−1] = Fn+1, (18)

DÛn+1 − δtL(Pn+1 − γ Pn) = 0. (19)
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In the caseγ = 0, this formulation can be viewed as astabilizedfinite element method, the
stabilization effect coming from the pressure Laplacian in the discrete continuityEq. (19), in
a similar way to other popular methods such as Galerkin/Least-Squares [32–34]. Except for
the parameter multiplyingL, which now isδt, the formulation is similar to the stabilization
method analyzed in [35]. This observation was first pointed out in [36]. Let us remark that
the use ofÛ as the velocity variable is also proposed in [37].

An additional comment is that, even though the pressure gradient is treated explicitly in
(18), the resulting scheme turns out to bestablein time. This results from the forthcoming
analysis.

A different approach was advocated in [30]. The idea is to write the problem in terms of
U rather thanÛ. Since

Ûn+1 = Un+1 + δtM−1G(Pn+1 − γ Pn), (20)

Eqs. (15)–(17) can be also rewritten as

M
1

δt
(Un+1 − Un) + K(Un+θ )Un+θ + E(Un+θ ) + GPn+1 = Fn+1,

DUn+1 + δt (DM−1G − L)(Pn+1 − γ Pn) = 0,

(21)

whereE(Un+θ ) can be thought of as the splitting error, and is given by

E(Un+θ ) := K(Sn+θ )Un+θ + K(Un+θ )Sn+θ + K(Sn+θ )Sn+θ ,

Sn+θ := θδtM−1G(Pn+1 − γ Pn).

Clearly,E(Un+θ ) is formally of orderO(δt1+γ ).
Consider again the caseγ = 0 (what happens whenγ = 1 is analyzed later). The stabi-

lization effect now comes from the termδtBPn+1, whereB := DM−1G − L. It is shown in
[38] that this matrix ispositive semi-definite. For completeness, let us provide the (simple)
proof here. This will allow us to introduce some of the concepts used in Section 4.

Let us consider the vector spaceEh := V h + ∇Qh, where∇Qh denotes the space of
vector functions which are gradients of functions inQh. If n1 is the dimension ofV h and
n1 + n23 the dimension ofEh, it can be split as

Eh = Vh ⊕ V⊥
h = Span

{
v1, . . . , vn1

} ⊕ Span
{
v′

1, . . . , v
′
n23

}
.

Let qh be an arbitrary element inQh, andQ the array of nodal values ofqh, and consider
the decomposition

∇qh = π1 + π23 =
n1∑

k=1

51,kvk +
n23∑
k=1

523,kv
′
k, π1 ∈ Vh, π23 ∈ V⊥

h ,

where51 and523 are the arrays of nodal values ofπ1 andπ23, respectively. We have that

−Q · LQ =
∫

�

|∇qh|2 d� = 51 · M51 +
∫

�

π23 · π23 d�,
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and, on the other hand, ifM−1
ij are the components ofM−1,

Q · DM−1GQ = −
n1∑

i,j=1

( ∫
�

∇qh · vi d�

)
M−1

ij

(∫
�

∇qh · vj d�

)

= −
n1∑

i,j=1

n1∑
k,l=1

51,k

( ∫
�

vk · vi d�

)
M−1

ij 51,l

( ∫
�

vl · vj d�

)

= −51 · M51.

Therefore,

Q · BQ =
∫

�

π23 · π23 d� ≥ 0.

This proves thatB is positive semi-definite and explicitly shows that the components of
∇qh controlled by this matrix are those orthogonal to the finite element spaceVh, that is,
π23. This fact is used in [22] to prove that approximation (14) yields an error of the same
order as the pressure interpolation error, and thus it does not deteriorate the accuracy of
the finite element approximation, although it introduces a spurious pressure behavior near
boundaries.

At this point, it is convenient to introduce some additional notation. IfX, Y are arrays,
{Xn}n=0,1,...,N is a sequence of arrays ofN + 1 terms andA a symmetric positive semi-
definite matrix, we define

‖X‖A := (X · AX)1/2,

‖Y‖−A := sup
x6=0

Y · X
‖X‖A

(hereA is assumed to be positive definite),

{Xn} ∈ `∞(A) ⇔ ‖Xn‖A ≤ C < ∞ ∀n = 0, 1, . . . , N,

{Xn} ∈ `p(A) ⇔
N∑

n=0

δt‖Xn‖p

A ≤ C < ∞, 1 ≤ p < ∞.

Here and in the following,C denotes a positive constant, not necessarily the same at
different appearances.

A remark is needed whenA = K. This matrix is not symmetric, but it has the contribution
from the convective term, which is skew-symmetric, and the contribution from the viscous
term,Kvisc, which is symmetric and positive-definite. We will simply writeU · K(U)U =
U · KviscU ≡ ‖U‖2

K. We will make use also ofL+ := −L, which is the positive semi-definite
matrix corresponding to the discretization of−1.

These definitions will allow us to express our stability results in a compact manner. The
basic assumption in all the cases will be that

N∑
n=0

δt‖Fn‖2
−K ≤ C < ∞, (22)

which is the matrix version of the classical condition required for the problem to be well
posed.
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3.2. Stability of the First-Order Projection Method

We will study now the stability properties of the first-order projection method, which
corresponds to scheme (15)–(17) withγ = 0 andδ = 1:

M
1

δt
(Ûn+1 − Un) + K(Ûn+1)Ûn+1 = Fn+1, (23)

δtLPn+1 = DÛn+1, (24)

M
1

δt
(Un+1 − Ûn+1) + GPn+1 = 0. (25)

The stability result for this scheme reads:

Stability of the first-order projection scheme:

{Un} ∈ `∞(M), {Ûn} ∈ `∞(M) ∩ `2(K), {√δtPn} ∈ `2(L+)

The stability estimate for the pressure shows that the pressure gradientmultiplied byδt
is `2 bounded. Whenδt is of orderO(h2) this is optimal [33, 35, 36].

To prove the result, let us multiply (23) by 2δtÛn+1 and (25) by 2δtUn+1. Using the
relation 2a(a − b) = a2 − b2 + (a − b)2 it is easily obtained that

‖Ûn+1‖2
M − ‖Un‖2

M + ‖Ûn+1 − Un‖2
M + δt‖Ûn+1‖2

K ≤ δt‖Fn+1‖2
−K, (26)

‖Un+1‖2
M − ‖Ûn+1‖2

M + ‖Un+1 − Ûn+1‖2
M + 2δtUn+1 · GPn+1 = 0. (27)

On the other hand, from (24) multiplied byPn+1, using the fact thatG = −Dt, and (20)
with γ = 0, we have

δtPn+1 · LPn+1 = −Un+1 · GPn+1 + δt Pn+1 · DM−1GPn+1,

2δtUn+1 · GPn+1 = 2δt2Pn+1 · BPn+1 = 2δt‖√δtPn+1‖2
B.

Using this in (27), adding up (26) and (27) and summing forn (up to anym ≤ N) it follows
that

{Un} ∈ `∞(M), {Ûn} ∈ `2(K), {√δtPn} ∈ `2(B).

On the other hand, (25) implies

‖Un+1 − Ûn+1‖2
M = −δt2Pn+1 · DM−1GPn+1,

and from the definition ofB it is easy to see that

N∑
n=0

δt‖√δtPn+1‖2
L+ =

N∑
n=0

δt2 Pn+1 · BPn+1 +
N∑

n=0

‖Un+1 − Ûn+1‖2
M.

Both terms on the right-hand side are bounded. The first because we already know that
{√δtPn} ∈ `2(B), and the second because it is part of the contribution from (27) when it is
added up with (26) and summed forn. Therefore,

{√δtPn} ∈ `2(L+).
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It remains to show that{Ûn} ∈ `∞(M), which follows easily adding up (26) and (27)
evaluated atn instead ofn + 1 and summing forn.

3.3. Stability of the Second-Order Scheme

The second-order scheme corresponds to the choicesγ = 1 andθ = 1/2 in (15)–(17),
that is,

M
1

δt
(Ûn+1 − Un) + K

(
Ûn+1/2)Ûn+1/2 + GPn = Fn+1/2, (28)

δtL(Pn+1 − Pn) = DÛn+1, (29)

M
1

δt
(Un+1 − Ûn+1) + G(Pn+1 − Pn) = 0. (30)

We will takeP0 = 0. For this method, the stability result is:

Stability of the second-order scheme:

{Un} ∈ `∞(M), {Ûn} ∈ `∞(M), {Ûn+1/2} ∈ `2(K),

{δtPn} ∈ `∞(L+), {√δtδPn} ∈ `2(L+)

Note that the pressure stability is now weaker than in the previous case. Let us prove these
estimates. Multiplying (28) by 2δtÛn+1/2 = δt (Ûn+1 + Un) and (30) byδt (Un+1 + Ûn+1)

it is found that

‖Ûn+1‖2
M − ‖Un‖2

M + δt
∥∥Ûn+1/2

∥∥2
K + δt (Ûn+1 + Un)GPn+1 ≤ Cδt‖Fn+1‖2

−K,

‖Un+1‖2
M − ‖Ûn+1‖2

M + δt (Un+1 + Ûn+1) · G(Pn+1 − Pn) = 0.
(31)

Adding up these two expressions we find that

‖Un+1‖2
M − ‖Un‖2

M + δt
∥∥Ûn+1/2

∥∥2
K + δtÛn+1 · GPn+1

+ δtUn · GPn + δtUn+1 · GδPn ≤ Cδt‖Fn+1‖2
−K. (32)

From (29) it is easily found that

δtÛn+1 · GPn+1 = −δtPn+1 · DÛn+1 = −δt2 Pn+1 · LδPn

= δt2

2

(‖Pn+1‖2
L+ − ‖Pn‖2

L+ + ‖δPn‖2
L+

)
. (33)

On the other hand, (30) implies

Un+1 = Ûn+1 − δtM−1GδPn,

and therefore

δtUn · GPn = −δtPn · DUn = −δtP · D(Ûn − δtM−1GδPn−1)

= −δtPn · (δtLδPn−1 − δtDM−1GδPn−1)

= δt2Pn · BδtPn−1 = δt2

2

(‖Pn‖2
B − ‖Pn−1‖2

B + ‖δPn−1‖2
B
)
. (34)
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Likewise,

δtUn+1 · GδPn = −δtδPn · DUn+1 = −δtδPn · D(Ûn+1 − δtM−1GδPn)

= −δtδPn · (δtLδPn − δtDM−1GδPn)

= δt2δPn · BδPn = δt‖√δtδPn‖2
B. (35)

Using (33)–(35) in (32), takingP0 = P−1 = 0 and summing forn we conclude that

{Un} ∈ `∞(M), {Ûn+1/2} ∈ `2(K), {δtPn} ∈ `∞(L+), {√δtδPn} ∈ `2(L+).

It remains to show that{Ûn} ∈ `∞(M). From (29) we have that

δtÛn+1 · GδPn = −δtδPnDÛn+1 = δt2‖δPn‖2
L+ ,

which substituted in (31) yields, after making use of (35),

‖Ûn+1‖2
M = ‖Un+1‖2

M + δt2‖δPn‖2
L+ + δt2‖δPn‖2

B.

The result follows noting that all the right-hand side terms are`∞ sequences.

4. PRESSURE STABILIZED SCHEMES

4.1. Pressure Stabilization

It has been shown in the previous section that the pressure stability of both the first- and
second-order schemes depends on the time step size. It can be anticipated that ifδt is very
small, stability problems may occur, especially for the second-order scheme. In order to
avoid this, one can resort to astabilizedformulation, in the same spirit as for monolithic
schemes.

Since the stability of the first order scheme is known to be adequate whenδt is taken
close to the critical time step of the explicit scheme (θ = 0 in (5)), it seems natural to devise
a stabilized formulation which inherits the stabilization effect of this first order scheme.
This idea was first developed in [22] for the Stokes problem, and is briefly reproduced here
for the transient Navier–Stokes equations and used in conjunction with a fractional step
method.

Let D̃, M̃, andG̃ be the matrices with the same components asD, M, andG, respectively,
but letting the velocity shape functions run over the boundary nodes also. Starting with the
monolithic time discretization, the stabilized formulation we consider is

MδtUn + K(Un+θ )Un+θ + GPn+1 = Fn+θ ,

DUn+1 + τ (D̃5n+β − LPn+1) = 0,

M̃5n+1 = G̃Pn+1,

where5 is an auxiliary variable, which may be treated either implicitly ifβ = 1 or explicitly
if β = 0, andτ is a stabilization parameter which depends on the local element sizes. For the
sake of simplicity in the exposition, we will take the finite element meshes quasi-uniform,
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and thusτ will depend only on the diameter of the finite element partitionh. The stability
and convergence analysis dictates that it must behave as

τ ≤ C
h2

ν

for viscous dominated cases (an appropriate choice for the constant isC = 1/4 when linear
elements are used). In general, it can be taken close to the critical time step of the explicit
time integration of (5) and (6) (see [22, 24] for further discussion). Nevertheless, the exact
value ofτ is irrelevant for our discussion.

To see that the modified monolithic problem will inherit the type of stability of the first-
order projection method, note that ifβ = 1 and5 is eliminated, the modified continuity
equation is

DUn+1 + τ B̃Pn+1 = 0, B̃ := D̃ M̃−1G̃ − L,

which is similar to (21) withγ = 0.
The reason for having modified matricesD, M andG to D̃, M̃ andG̃, respectively, is

that in this way the modified monolithic problem does not suffer from spurious pressure
boundary layers, as it happens for the first-order projection scheme (see [22] for the analysis
of this point).

For the monolithic scheme we may use the same approximations (10) and (14) as for the
nonstabilized (Galerkin) formulation to arrive to the split problem:

M
1

δt
(Ûn+1 − Un) + K(Ûn+θ )Ûn+θ + γ GPn = Fn+θ ,

δtL(Pn+1 − γ Pn) + τ (LPn+1 − D̃5n+β) = DÛn+1,

M
1

δt
(Un+1 − Ûn+1) + G(Pn+1 − γ Pn) = 0,

M̃5n+1 = G̃Pn+1.

The variational statement corresponding to this matrix problem, which we will use in this
section, consists of findinĝun+1

h ∈ Vh, pn+1
h ∈ Qh, un+1

h ∈ V h, andπn+1
h ∈ Ṽ h such that

1

δt

(
ûn+1

h − un
h, vh

) + c
(
ûn+θ

h , ûn+θ
h , vh

) + a
(
ûn+θ

h , vh

) − γ b
(
pn

h, vh

)

= 〈 f n+θ , vh〉 ∀vh ∈ Vh, (36)

−δt
(∇(

pn+1
h − γpn

h

)
,∇qh

) − τ
(∇pn+1

h − π
n+β
h ,∇qh

)
= (

qh,∇ · ûn+1
h

) ∀qh ∈ Qh, (37)

1

δt

(
un+1

h − ûn+1
h , vh

) − b
(
pn+1

h − γpn
h, vh

) = 0 ∀vh ∈ V h, (38)

(
πn+1

h , ηh

) = (∇pn+1
h , ηh

) ∀ηh ∈ Ṽ h, (39)

whereṼh is the spaceV h enlarged with the continuous vector functions associated to the
boundary nodes. The meaning of the new auxiliary variableπh is clearly observed from
(39): It is the projection of the pressure gradient∇ph onto Ṽ h.
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In the following analysis, we will need several projections of∇ph, all of them with
respect to theL2-inner product. These projections are

π1: projection ontoV h,

π2: projection ontoV⊥
h ∩ Ṽ h,

π3: projection ontoṼ
⊥
h .

Likewise, we will denoteπ ij := π i + π j . Observe in particular thatπ12 ≡ πh, and that,
using these projections, (38) implies

un+1
h = ûn+1

h − δt
(
πn+1

1 − γπn
1

)
. (40)

We will see from the following analysis that the terms multiplied byτ provide control on
π3, that is, the component of the pressure gradient orthogonal to the space of continuous
vector fields. Control onπ1 can be directly obtained from the momentum equation, as we
will see, whereas control overπ2 follows from the condition

‖∇ph‖ ≤ C(‖π1‖ + ‖π3‖), (41)

which is assumed to hold for anyph ∈ Qh. This condition is studied in detail in [22]. In
particular, it is shown to hold when equal interpolation is used for the velocity components
and the pressure, the situation in which we are interested.

Similarly to Section 3, the stability estimates we will obtain here will be expressed using
the following notation. Let{f n} be a sequence of generic functions (scalar or vectorial).
We define

{f n} ∈ `∞(L2) ⇔ ‖f n‖ ≤ C < ∞ ∀n = 0, 1, . . . , N,

{f n} ∈ `p(L2) ⇔
N∑

n=0

δt‖f n‖p ≤ C < ∞, 1 ≤ p < ∞,

{f n} ∈ `2(H 1) ⇔
N∑

n=0

δt‖f n‖2
1 ≤ C < ∞,

where‖ · ‖ is the standardL2 norm and‖ · ‖1 is theH 1 norm, that is, the sum of theL2

norm of a function and theL2 norm of its gradient. We recall that for functionsf vanishing
on ∂�, ‖f ‖1 is equivalent to‖∇f ‖. Likewise, we will use the fact that̀2(L2) ⊂ `1(L2),
valid for finite time intervals of analysis.

Finally, let us state the condition analogous to (22) in the variational setting that we use
now, which is

N∑
n=0

δt‖ f n‖2−1 ≤ C < ∞,

where‖ · ‖−1 is the dual norm of‖ · ‖1.
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4.2. Stability of the Stabilized First-Order Scheme

The first-order stabilized scheme is obtained takingγ = 0 andθ = 1 in (36)–(39), which
yields

1

δt

(
ûn+1

h − un
h, vh

) + c
(
ûn+1

h , ûn+1
h , vh

) + a
(
ûn+1

h , vh) = 〈 f n+1, vh〉 ∀vh ∈ V h, (42)

−δt
(∇pn+1

h ,∇qh

) − τ
(∇pn+1

h − π
n+β
h ,∇qh

) = (
qh,∇ · ûn+1

h

) ∀qh ∈ Qh, (43)

1

δt

(
un+1

h − ûn+1
h , vh

) − b
(
pn+1

h , vh

) = 0 ∀vh ∈ V h. (44)

The stability result for this formulation is:

Stability of the stabilized first-order scheme:{
un

h

} ∈ `∞(L2),
{
ûn

h

} ∈ `∞(L2) ∩ `2(H 1),{√
δt∇pn

h

} ∈ `2(L2),
{√

τ∇pn
h

} ∈ `1(L2)

From this we see that, on top of the stability estimate of the scheme withτ = 0, now we
have an additional one which is optimal ifτ = O(h2).

Let us proceed to prove these stability results. Takingvh = 2δt ûn+1
h in (42) andvh =

2δtun+1
h in (44) it is found that

∥∥ûn+1
h

∥∥2 − ∥∥un
h‖2 + ∥∥ûn+1

h − un
h

∥∥2 + δtν
∥∥∇ ûn+1

h

∥∥2 ≤ Cδt‖ f n+1‖2−1, (45)∥∥un+1
h

∥∥2 − ∥∥ûn+1
h ‖2 + ∥∥un+1

h − ûn+1
h

∥∥2 + δt
(
pn+1

h ,∇ · un+1
h

) = 0. (46)

On the other hand, from (43) and using (40) (withγ = 0) we have that

−(
pn+1

h ,∇ · un+1
h

) = (∇pn+1
h , ûn+1

h

) − δt
(∇pn+1

h ,πn+1
1

)
= δt

(∇pn+1
h ,∇pn+1

h

) + τ
(∇pn+1

h ,∇pn+1
h − π

n+β
h

) − δt
(
πn+1

1 ,πn+1
1

)
= δt

∥∥πn+1
23

∥∥2 + τ
(∇pn+1

h ,∇pn+1
h − π

n+β
h

)
. (47)

Calling β̄ := 1 − β, the second term in the right-hand side can be written as

(∇pn+1
h ,∇pn+1

h − π
n+β
h

) = (∇pn+1
h ,πn+1

3

) + β̄
(∇pn+1

h ,πn+1
h − πn

h

)

= ∥∥πn+1
3

∥∥2 + β̄

2

(∥∥πn+1
h

∥∥2 − ∥∥πn
h

∥∥2 + ∥∥πn+1
h − πn

h

∥∥2)
.

Using this in (47), the result in (46), adding it with (45), and summing forn it is found that

{
un

h

} ∈ `∞(L2),
{
ûn

h

} ∈ `2(H 1),{√
δtπn

23

} ∈ `2(L2).
{√

τπn
3

} ∈ `2(L2).

On the other hand, from (40) again,

∥∥un+1
h − ûn+1

h

∥∥2 = δt2
∥∥πn+1

1

∥∥2
,
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and since the sum forn of the left-hand side is bounded (it appears when (45) and (46)
are added) we have that{√δtπn

1} ∈ `2(L2), which together with the fact that{√δtπn
23} ∈

`2(L2), implies that{√δt∇pn
h} ∈ `2(L2).

Stability of {√τπn
1} is more delicate. It is provided by the momentum equation actually

solved by the fractional scheme, which after adding (42) and (44) is found to be

1

δt

(
un+1

h − un
h, vh

) + c
(
ûn+1

h , ûn+1
h , vh

) + a
(
ûn+1

h , vh

) + (∇pn+1
h , vh

) = 〈 f n+1, vh〉.

Takingvh = πn+1
1 and using the standard inverse estimate (see e.g., [39])

∥∥πn+1
1

∥∥
1 ≤ Cinv

h

∥∥πn+1
1

∥∥, (48)

valid for quasi-uniform finite element partitions, we have

∥∥πn+1
1

∥∥2 ≤ ‖ f n+1‖−1
Cinv

h

∥∥πn+1
h

∥∥ + 1

δt

∥∥un+1
h − un

h

∥∥∥∥πn+1
1

∥∥
+ (

Na

∥∥ûn+1
h

∥∥
1 + Nc

∥∥ûn+1
h

∥∥2
1

)Cinv

h

∥∥πn+1
1

∥∥, (49)

whereNa andNc are the norms of the formsa and c, respectively, and we have used
the continuity ofa andc, that is,a(u, v) ≤ Na‖u‖1‖v‖1, c(u, v,w) ≤ Nc‖u‖1‖v‖1‖w‖1.
Dividing by ‖πn+1

1 ‖, summing forn, noting that
√

τ ≤ Ch and using the previous stability
bounds, it is found that{√τπn

1} ∈ `2(L2). This, together with the fact that{√τπn
3} ∈

`2(L2) and assumption (41), allows us to conclude that{√τ∇pn
h} ∈ `2(L2). Observe that

the reason why this result can not be improved to{√τ∇pn
h} ∈ `2(L2) is the presence of

the termNc‖ûn+1
h ‖2

1 in (49) (see [24] for a discussion about the possibility to improve this
result for the monolithic scheme).

Finally, the fact that{ûn
h} ∈ `∞(L2) follows adding (45) and (46) evaluated atn instead

of n + 1 and summing forn.

4.3. Stability of the Stabilized Second-Order Scheme

To conclude this section, let us study the stabilized second-order method, which is
obtained selectingγ = 1 andθ = 1/2 in (36)–(39):

1

δt

(
ûn+1

h − un
h, vh

) + c
(
ûn+1/2

h , ûn+1/2
h , vh

) + a
(
ûn+1/2

h , vh

) − b
(
pn

h, vh

)

= 〈 f n+1/2, vh〉 ∀vh ∈ V h, (50)

−δt
(∇(

pn+1
h − pn

h

)
,∇qh

) − τ
(∇pn+1

h − π
n+β
h ,∇qh

)
= (

qh,∇ · ûn+1
h

) ∀qh ∈ Qh, (51)

1

δt

(
un+1

h − ûn+1
h , vh

) − b
(
pn+1

h − pn
h, vh

) = 0 ∀vh ∈ V h. (52)
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Contrary to what happened for the first-order scheme, nowwe need to require thatτ ≤ Cδt.
The stability we are able to prove in this case is:

Stability of the stabilized second-order scheme:{
un

h

} ∈ `∞(L2),
{
ûn

h

} ∈ `∞(L2),
{
ûn+1/2

h

} ∈ `2(H 1),{
δt∇pn

h

} ∈ `∞(L2),
{√

δt∇δpn
h

} ∈ `2(L2),
{√

τ∇pn
h

} ∈ `1(L2)

The useful pressure stability estimate in this case is the last one, which again is optimal
whenτ = O(h2).

The proof-strategy is similar to the previous cases. Takingvh = 2δt ûn+1/2
h in (50) and

vh = δt (un+1
h + ûn+1

h ) in (52) it is found that

∥∥ûn+1
h

∥∥ − ∥∥un
h

∥∥ + δtν
∥∥∇ ûn+1/2

h

∥∥2 − δt
(
pn

h,∇ · ûn+1
h

) − δt
(
pn

h,∇ · un
h

)
≤ Cδt‖ f n+1/2‖2−1, (53)∥∥un+1
h

∥∥2 − ∥∥ûn+1
h

∥∥2 − δt
(
pn+1

h − pn
h,∇ · un+1

h

) − δt
(
pn+1

h − pn
h,∇ · ûn+1

h

) = 0.

Adding these two expressions we get

∥∥un+1
h

∥∥2 − ∥∥un
h

∥∥2 + δtν
∥∥∇ ûn+1/2

h

∥∥2 − δt
(
pn

h,∇ · un
h

) − δt
(
pn+1

h − pn
h,∇ · un+1

h

)
− δt

(
pn+1

h ,∇ · ûn+1
h

) ≤ Cδt‖ f n+1/2‖2−1. (54)

We need to deal with the different terms involving the pressure in the left-hand side of this
inequality. Using (51) and (52), as well as (40), the various terms can be written as

−(
pn

h,∇ · un
h

) = −(
pn

h,∇ · ûn
h

) + δt
(
pn

h,∇ · (
πn

1 − πn−1
1

))
= δt

(∇δpn−1
h ,∇pn

h

) + τ
(∇pn

h − π
n+β−1
h ,∇pn

h

)
− δt

(∇pn
h,πn

1 − πn−1
1

)
= δt

(
πn

23 − πn−1
23 ,∇pn

h

) + τ
(∇pn

h − π
n+β−1
h ,∇pn

h

)

= 1

2
δt

(∥∥πn
23

∥∥2 − ∥∥πn−1
23

∥∥2 + ∥∥πn
23 − πn−1

23

∥∥2)

+ τ (∇pn
h − π

n+β−1
h ,∇pn

h

)
(55)

−(
δpn

h,∇ · un+1
h

) = −(
δpn

h,∇ · ûn+1
h

) + δt
(
δpn

h,∇ · (
πn+1

1 − πn
1

))
= δt

(∇δpn
h,∇δpn

h

) + τ
(∇pn+1

h − π
n+β
h ,∇δpn

h

)
− δt

(∇δpn
h,πn+1

1 − πn
1

)
= δt

∥∥πn
23 − πn

23

∥∥2 + τ
(∇pn+1

h − π
n+β
h ,∇δpn

h

)
(56)

−(
pn+1

h ,∇ · ûn+1
h

) = δt
(∇δpn

h,∇pn+1
h

) + τ
(∇pn+1

h − π
n+β
h ,∇pn+1

h

)

= δt

2

(∥∥∇pn+1
h

∥∥2 − ∥∥∇pn
h

∥∥2 + ∥∥∇pn+1
h − ∇pn

h

∥∥2)

+ τ
(∇pn+1

h − π
n+β
h ,∇pn+1

h

)
. (57)
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The terms multiplied byτ in these expressions can be written as

(∇pn+1
h − π

n+β
h ,∇pn+1

h

) = (
πn+1

3 ,∇pn+1
h

) + β̄
(
πn+1

h − πn
h,∇pn+1

h

)

= ∥∥πn+1
3

∥∥2 + β̄

2

(∥∥πn+1
h

∥∥2 − ∥∥πn
h

∥∥2 + ∥∥πn+1
h − πn

h

∥∥2)
,

(∇pn+1
h − π

n+β
h ,∇δpn

h

) = (
πn+1

3 ,∇δpn
h

) + β̄
(
πn+1

h − πn
h,∇δpn

h

)

= 1

2

(∥∥πn+1
3

∥∥2 − ∥∥πn
3

∥∥2 + ∥∥πn+1
3 − πn

3

∥∥2) + β̄
∥∥πn+1

h − πn
h

∥∥2
.

Using these expressions in (55)–(57), the result in (54), and summing forn it is found that

{
un

h

} ∈ `∞(L2),
{
ûn+1/2

h

} ∈ `2(H 1),{
δt∇pn

h

} ∈ `∞(L2),
{√

δt∇δpn
h

} ∈ `2(L2),
{√

τπn
3

} ∈ `2(L2).

On the other hand, from (53), the inequalityab ≤ (a2 + b2)/2 and these stability results it
is readily seen that

∥∥ûn+1
h

∥∥2 ≤ 1

2

∥∥ûn+1
h

∥∥2 + C
(∥∥un

h

∥∥2 + δt2
∥∥∇pn

h

∥∥2 + δt‖ f n+1/2‖2−1

)
,

from where{ûn
h} ∈ `∞(L2).

It remains to boundπn
1 in `1(L2). Using the same strategy as for the first-order scheme

(see (49)), we now have that

δt
√

τ
∥∥πn+1

1

∥∥ ≤ √
τ
∥∥un+1

h − un
h

∥∥ + δt
(
Na

∥∥ûn+1/2
h

∥∥
1 + Nc

∥∥ûn+1/2
h

∥∥2
1

)
+ δt‖ f n+1/2‖−1.

When summing forn, the only term that still has not been shown to be bounded is the first
on the right-hand side. Bounding it will conclude the proof. Since

N−1∑
n=0

√
τ
∥∥un+1

h − un
h

∥∥ ≤
N−1∑
n=0

√
τ
∥∥un+1

h − ûn+1
h

∥∥ +
N−1∑
n=0

√
τ
∥∥ûn+1

h − un
h

∥∥ (58)

and, from (40) and the assumptionτ ≤ Cδt,

N−1∑
n=0

√
τ
∥∥un+1

h − ûn+1
h

∥∥ =
N−1∑
n=0

√
τδt

∥∥πn+1
h − πn

1

∥∥

≤ C

N−1∑
n=0

δt2
∥∥∇pn+1

h − ∇pn
h

∥∥2
< ∞,

it only remains to bound the last term in (58). Takingvh = ûn+1
h − un

h in (50) and using an
inverse estimate similar to (48), it is found that

1

δt

∥∥ûn+1
h − un

h

∥∥2 ≤ 1√
τ

An

∥∥ûn+1
h − un

h

∥∥ + Bn,

An := Na

∥∥ûn+1/2
h

∥∥
1 + Nc

∥∥ûn+1/2
h

∥∥2
1 + ‖ f n+1/2‖−1,

Bn := (
pn

h,∇ · ûn+1
h

) − (
pn

h,∇ · un
h

)
.
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Using the fact that ifx2 ≤ bx + c thenx ≤ 2b + 2
√

c, we obtain

N−1∑
n=0

√
τ
∥∥ûn+1

h − un
h

∥∥ ≤ C

( N−1∑
n=0

δtAn +
N−1∑
n=0

√
δt

√
τ
√

Bn

)
.

The first term on the right-hand side is bounded, and therefore it only remains to obtain a
bound for the second. Sinceτ ≤ Cδt,

N−1∑
n=0

√
δt

√
τ
√

Bn ≤ C

N−1∑
n=0

δtBn.

From (55) we have

−
N−1∑
n=0

δt
(
pn

h,∇ · un
h

) ≤ 1

2

N−1∑
n=0

δt2(∥∥πn
23

∥∥2 − ∥∥πn−1
23

∥∥2 + ∥∥πn
23 − πn−1

23

∥∥2)

+
N−1∑
n=0

δtτ

[∥∥πn
3

∥∥2 + β̄

2

(∥∥πn
h

∥∥2 − ∥∥πn−1
h

∥∥2 + ∥∥πn
h − πn−1

h

∥∥2)]
< ∞,

and similarly to (55)–(57) we can obtain

N−1∑
n=0

δt
(
pn

h,∇ · ûn+1
h

)

=
N−1∑
n=0

[−δt2(∇δpn
h,∇pn

h

) − δtτ
(∇pn+1

h − π
n+β
h ,∇pn

h

)]

=
N−1∑
n=0

[
δt2

2

(∥∥∇pn
h

∥∥2 − ∥∥∇pn+1
h

∥∥2 + ∥∥∇pn
h − ∇pn+1

h

∥∥2)

−δtτ
(
πn+1

3 ,πn
3

) − δtτ β̄
(
πn+1

h − πn
h,π

n
h

)]

≤ C

N−1∑
n=0

δt2(∥∥∇pn
h − ∇pn+1

h

∥∥2 + ∥∥πn+1
3

∥∥2 + ∥∥πn
3

∥∥2 + β̄
∥∥πn+1

h − πn
h

∥∥2)
.

From the results already obtained, the last term on the right-hand side is bounded. This
completes the proof of stability.

5. PRESSURE AND CONVECTION STABILIZATION

The pressure stabilization procedure introduced in the previous section consists of adding
the term

τ
(∇pn+1

h − πn
h,∇qh

)

to the variational equations of the Galerkin method (either to the monolithic or to the
fractional step time discretization). We have considered directly the caseβ = 0, which is
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more appealing from the computational point of view and has the same stability properties
as the caseβ = 1. This stabilizing term can be thought of as a least-squares form of
the component of the pressure gradient orthogonal to the finite element space,πn+1

3 =
∇pn+1

h − πn+1
h . If this allows the stabilization of the pressure, the idea that naturally arises

is to use the same strategy to stabilize convection when the convective term dominates the
viscous one. This idea is developed in [25]. Here we describe only the final outcome, which
consists of adding

τ
(
ûn+ θ

h · ∇ ûn+ θ
h + ∇pn+1

h − πn
h, ûn+ θ

h · ∇vh + ∇qh

)

to the variational equations of the Galerkin method. The contribution to the momentum
equation is obtained when the pressure test function isqh = 0, whereas the contribution to
the continuity equation is found whenvh = 0. The final result is that the equations to be
solved when fractional step methods are used are

1

δt

(
ûn+1

h − un
h, vh

) + c
(
ûn+ θ

h , ûn+ θ
h , vh

) + a
(
ûn+ θ

h , vh

) − γ b
(
pn

h, vh

)

+ τ
(
ûn+θ

h · ∇ ûn+θ
h + ∇pn

h − πn
h, ûn+θ

h · ∇vh

) = 〈 f n+θ , vh〉 ∀vh ∈ V h,

− δt
(∇(

pn+1
h − γpn

h

)
,∇qh

) − τ
(
ûn+θ

h · ∇ ûn+θ
h + ∇pn+1

h − πn
h,∇qh

)
= (

qh,∇ · ûn+1
h

) ∀qh ∈ Qh,

1

δt

(
un+1

h − ûn+1
h , vh

) − b
(
pn+1

h − γpn
h, vh

) = 0 ∀vh ∈ V h,

(
πn+1

h , ηh

) = (
ûn+θ

h · ∇ ûn+θ
h + ∇pn+1

h , ηh

) ∀ηh ∈ Ṽ h,

which replace (36)–(39). It has to be observed that the pressure in the first equation is
treated explicitly, in order to keep the uncoupling of the velocity and pressure calculations.
Observe also that nowπh has the meaning of being the projection ofûh · ∇ ûh + ∇ph onto
the finite element space.

Let us finally remark that the possibility of treating explicitly the projectionπh greatly
simplifies the numerical implementation of this stabilization technique. Apart from the
evaluation of the several additional terms in the equations for the velocity and the pressure,
only anL2 projection needs to be performed at the end of each time step. This is compu-
tationally very inexpensive, especially if the Gramm matrixM̃ involved in the process is
approximated by the diagonal one obtained from a standard lumping technique.

6. NUMERICAL RESULTS

In this section we present the result of two simple 2-D numerical experiments to illustrate
the practical impact of the theoretical findings. The objective of the first is to show the
dependence of the pressure stability on the time step, whereas the second is mainly intended
to check the accuracy, a point that has been mentioned but not analyzed.

6.1. Cavity Flow Problem

This example is the classical cavity flow problem. The Navier–Stokes equations are
solved in the unit square with zero velocities everywhere on the boundary except on the
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top, where a tangent unit velocity is prescribed. The viscosity has been taken asν = 0.01,
which yields a Reynolds number of 100. A mesh of 20× 20 four-noded bilinear elements
has been employed. The flow equations have been advanced in time until the steady-state
has been reached. The critical time step for the explicit scheme has been estimated to be

δtcrit =
(

4ν

h2 + 2U

h

)−1

, (59)

FIG. 1. Pressure contours for the cavity flow-problem using the first-order scheme. From the top to the
bottom:δt = 0.1δtcrit, δt = δtcrit, andδt = 1.0.
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FIG. 2. Pressure contours for the cavity flow problem using the second-order scheme. From the top to the
bottom:δt = 0.1 δtcrit, δt = δtcrit, andδt = 1.0.

whereh = 0.05 is the element size andU = 1 the characteristic velocity. This yields
δtcrit = 1/56.

Pressure contours using the original first-order scheme are shown in Fig. 1. It is clearly
observed there that forδt = 0.1δtcrit some oscillations appear, whereas forδt = δtcrit the
solution is acceptable. Likewise, whenδt is large (1 in this case), the solution is definitely
overdiffusive. This shows the dependence of the pressure stability on the time step size.

The same cases have been computed with the second-orderscheme. From Fig. 2, it is seen
that only for very large values ofδt is the weak stability inherent to the scheme activated.
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FIG. 3. Pressure contours for the cavity flow problem using the second-order scheme with stabilization. From
the top to the bottom:δt = 0.1 δtcrit, δt = δtcrit, andδt = 1.0.

Contrary to the previous case, forδt = 0.1 δtcrit and δt = δtcrit the pressure solution is
completely oscillatory.

The final set of results for this problem shown in Fig. 3 corresponds to the stabilized
formulation using the second-order scheme. The stability parameterτ has been computed
as the critical time step given by (59) but for each element, takingU as the mean element
velocity. The pressure solution is correct for all the values ofδt.

Even though the implicit schemes we have considered allow us to use time steps as large
as desired, it is known that in practice the steady-state is reached faster (both in real time
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FIG. 4. Velocity convergence toward the steady-state for the cavity flow problem. From the top to the bottom:
first-order scheme, second-order scheme, and second-order scheme with stabilization.

and in CPU time) usingδt close toδtcrit. We have also used this example to demonstrate
this. Converge to the steady-state for the different formulations employed is shown in
Fig. 4, where the residual is measured as|Un − Un−1|/|U1 − U0| (here| · | is the standard
Euclidean norm of an array). From Fig. 5 it is seen that this dependence onδt is similar for
all the schemes.

6.2. A Test with Analytical Solution

We have referred to the two formulations analyzed throughout the paper as thefirst-order
projection method and asecond-order scheme. In this example we test the accuracy of
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FIG. 5. Velocity convergence toward the steady-state for the cavity flow problem. From the top to the bottom:
δt = 0.1 δtcrit, δt = δtcrit, andδt = 1.0.

these formulations. Since we have seen that the second-order one is unstable, we have
combined it with the pressure stabilization technique, with the parameterτ computed as in
the previous test.

In this example we solve again the Navier–Stokes equations in the unit square with
homogeneous velocity conditions and taking the force vector so as to have as exact solution

u1(x1, x2, t) = f (x1)f
′(x2)g(t), u1(x1, x2, t) = −f ′(x1)f (x2)g(t),

(60)
f (x) = 100x2(1 − x)2, g(t) = cos(π t) exp(−t),
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FIG. 6. Velocity vectors for the test with analytical solution.

with two solutions for the pressure, namely,p = 0 andp = 100x2. The time interval of
analysis is [0, 1] and the viscosityν = 0.1. A mesh of 40× 40 bilinear elements has been
employed to discretize the computational domain. The velocity solution att = 1 is shown
in Fig. 6.

Convergence of the time approximation for the casep = 0 and measured att = 1 is
plotted in Fig. 7, where “total” refers to the scheme withγ = 0 in (15)–(17), and “incre-
mental” refers to the caseγ = 1. The error has been computed as|Ut=1 − Uexact|/|Uexact|,
whereUt=1 is the numerical solution att = 1, andUexactis the array of nodal values of the
exact velocity att = 1. Since the exact pressure isp = 0, the value ofγ does not affect the

FIG. 7. Convergence for the test with analytical solution. Casep = 0.
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FIG. 8. Evolution of thex-velocity at (0.75, 0.75) using the first-order scheme. Casep = 0.

accuracy in this example. From Fig. 7 it is seen thatθ = 1 gives a first-order approximation
andθ = 1/2 a second-order one. The evolution of the first velocity componentu1 at a point
is depicted in Fig. 8 and Fig. 9 for the first- and second-order schemes, respectively.

The evolution to the steady-state wheng(t) is replaced by 1 in (60) is shown in Fig. 10.
As in the previous example, it is seen that large values ofδt may yield slower rates of
convergence. Finally, Fig. 11 shows the error at the steady-state as a function ofδt when
p = 100x2, measuring the well-known property that for the first-order scheme the solution
depends largely onδt.

7. SUMMARY OF MAIN RESULTS AND CONCLUSIONS

The main objective of this paper has been to clarify the role of the pressure Poisson
equation in the pressure stability of fractional step methods for incompressible flows, in

FIG. 9. Evolution of thex-velocity at (0.75, 0.75) using the second-order scheme. Casep = 0.
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FIG. 10. Convergence to the steady-state for the test with analytical solution (T: total, I: incremental). Case
p = 100x2.

our case using the finite element method for the space discretization. The basic stability
results for the two schemes analyzed are:

First order:
{√

δt∇pn
h

} ∈ `2(L2),
{√

τ∇pn
h

} ∈ `1(L2)

Second order:
{
δt∇pn

h

} ∈ `∞(L2),
{√

δt∇δpn
h

} ∈ `2(L2),
{√

τ∇pn
h

} ∈ `1(L2)

Inspecting these results, the main conclusions that can be drawn include:

• For the original (τ = 0) first-order scheme, pressure is stable, but the parameter that
controls the amount of stability is the time step size, and therefore:

• If δt is very small, pressure oscillations may appear.

FIG. 11. Error at the steady-state as a function of the time step for the test with analytical solution. Case
p = 100x2.
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• If δt is large, the method may be overdiffusive. This limits the applicability of implicit
schemes, since appropriate values ofδt adequate for stability turn out to be close to the
critical time step of explicit schemes (θ = 0).

• The original (τ = 0) second-order method has a very poor pressure stability. At the
steady-state, only thatδt‖∇ph‖ ≤ C < ∞ can be ensured, whereas the optimum would be
to have control on

√
δt‖∇ph‖. However, ifδt is very large, the control onδt‖∇ph‖ can be

enough to obtain stable pressures.
• Pressure stability in stabilized schemes depends on an algorithmic parameterτ , which

may be chosen independent ofδt (except for the conditionτ ≤ Cδt needed for the second-
order scheme). Both for the first- and for the second-order methods, this stabilization allows
us to free the link stability-δt. For the first-order scheme,δt can be arbitrarily small, and
for the second-order one we improve the estimate{δt∇pn

h} ∈ `∞(L2). In both cases, we
are left with{√τ∇pn

h} ∈ `1(L2).

A very important fact from the computational point of view is that the pressure gradient
projection for stabilized schemesmay be treated explicitly(which corresponds to taking
β = 0 in (37)). It has been shown that this does not upset stability. Finally, let us mention
that convection dominated flows can be stabilized by considering a natural extension of the
pressure stabilization technique which has been described in Section 5.
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